CSE 444: Database Internals

Lectures 20-21
Parallel DBMSs

CSE 444 - Spring 2019

Where We Are Headed Next

» Scaling the execution of a query
— Parallel DBMS
— MapReduce
— Spark and Myria

» Scaling transactions
— Distributed transactions
— Replication

» Scaling with NoSQL and NewSQL

CSE 444 - Spring 2019

DBMS Deployment: Local

What We Have Already Learned

» Overall architecture of a DBMS

* Internals of query execution:
— Data storage and indexing
— Buffer management
— Query evaluation including operator algorithms
— Query optimization

* Internals of transaction processing:
— Concurrency control: pessimistic and optimistic
— Transaction recovery: undo, redo, and undo/redo

CSE 444 - Spring 2019

Reading Assignments
» Main textbook Chapter 20.1

» Database management systems.
Ramakrishnan&Gehrke.
Third Ed. Chapter 22.11

CSE 444 - Spring 2019

&
Great for one application

(could be more) and one

_user.
DBMS
Desktop
Data files on disk

CSE 444 - Spring 2019

DBMS Deployment: Client/Server

Great for many apps and
many users

connection i\
(ODBC, JDBC) &

\

L
B 3
]

Data files

DB Server

CSE 444 - Spring 2019 Appllcat|ons

DBMS Deployment: 3 Tiers

' Great for web-based \
applications

Connection
(e.g., JDBC

|
£

I

E
&5

HTTP/SS|

=

L
B 5
]

Data files

Web Server &

@$

DBMS Deployment: Cloud

' Great for web-based \
applications

HTTP/SSL
- " x 5 / \
- = . N
Web Server & @
~— App Server

CSE 444 - Spring 2019

Browser

How _to_ Scale?
B
DB Server | ¥
:
I
I

multiplex
(e.g., JDBC) \Zaa

I http
© I
I

o HTTP/SSL

T H \5&

gy
11

=z
Use many Web servers: Easy!
“Sprma 018 Browser

Many DBMS

instances: HARD to Scale?
r— "\
¢ Dy : !
Iei=IL : E I
By H! &
1 B0 s
(] | E I /
18 1 /:/— http 2
. O | Comnection multiplex
(e.g., JDBC) |
| | . HTTP/SSL
I I ! \
I
EE - E : ﬁiﬂ
O n
gl s
' "2 Web Server Farm
4 - Spring 2019 Browser

How to Scale?

» We can easily replicate the web servers and
the application servers

* We cannot so easily replicate the database
servers, because the database is unique

» We need to design ways to scale up the DBMS

CSE 444 - Spring 2019 1"

How to Scale a DBMS?
E —| Scale up E -

Scale out

E — A more
werful server

More servers,
one database

What to scale?

* OLTP: Transactions per second
— OLTP = Online Transaction Processing

* OLAP: Query response time
— OLAP = Online Analytical Processing

CSE 444 - Spring 2019 13

Scaling Transactions Per Second

* Amazon

* Facebook
« Twitter

« ... your favorite Internet application...

* Goal is to scale OLTP workloads

We will get back to this next week

CSE 444 - Spring 2019 14

Scaling Single Query
Response Time
* Goal is to scale OLAP workloads

» That means the analysis of massive datasets

CSE 444 - Spring 2019 15

This Week: Focus on Scaling a
Single Query

CSE 444 - Spring 2019 16

Big Data

¢ Buzzword?

Definition from industry:

- High Volume http://www.qartner.com/newsroom/id/1731916
— High Variety
— High Velocity

CSE 444 - Spring 2019 17

Big Data

Volume is not an issue

» Databases do parallelize easily; techniques available
from the 80’s
— Data partitioning
— Parallel query processing

« SQL is embarrassingly parallel

* We will learn how to do this

CSE 444 - Spring 2019 18

http://www.gartner.com/newsroom/id/1731916

Big Data

New workloads are an issue

* Big volumes, small analytics
— OLAP queries: join + group-by + aggregate
— Can be handled by today’'s RDBMSs (e.g., Teradata)

 Big volumes, big analytics
— More complex Machine Learning, e.g. click
prediction, topic modeling, SVM, k-means
— Requires innovation — Active research area

CSE 444 - Spring 2019 19

Data Analytics Companies

Fifteen years ago, explosion of db analytics companies

» Greenplum founded in 2003 acquired by EMC in 2010; A
parallel shared-nothing DBMS (this lecture)

» Vertica founded in 2005 and acquired by HP in 2011; A parallel,
column-store shared-nothing DBMS

« DATAIlegro founded in 2003 acquired by Microsoft in 2008; A
parallel, shared-nothing DBMS

« Aster Data Systems founded in 2005 acquired by Teradata in
2011; A parallel, shared-nothing, MapReduce-based data
processing system (in two lectures). SQL on top of MapReduce

* Netezza founded in 2000 and acquired by IBM in 2010. A
parallel, shared-nothing DBMS.

CSE 444 - Spring 2019 20

BIG DATA & A LANDSCAPE 2018

Two Fundamental Approaches to
Parallel Data Processing
 Parallel databases, developed starting with the

80s (this lecture)

— For both OLTP (transaction processing)
— And for OLAP (decision support queries)

» MapReduce, first developed by Google,
published in 2004 (in two lectures)
— Only for decision support queries

Today we see convergence of the two approaches ‘

22

Architectures for Parallel DMBSs

Figure 1 - Types of database architecture

[shared-Disk (e.g. Oracle RAC) | [shared-Nothing (e.g. Greenplum) |
2 !

Metwork H
e : Haster
S - - > H Network
DB DB DB 0B

'T-W : - =
- i |bisk| 'Bisk| [Disk| (Disk’ |‘Disk |Bisk
SAN / Shared H

Disk '

From: Greenplum Database Whitepaper

SAN = “Storage Area Network”

CSE 444 - Spring 2019 24

Our Focus: Shared-Nothing DBMS

CSE 444 - Spring 2019 25

Parallel Query Evaluation

» Multiple DBMS instances (= processes) also called
“nodes” execute on machines in a cluster
— One instance plays role of the coordinator
— Other instances play role of workers

» Applications interact with coordinator

» Workers execute queries
— Typically all workers execute the same plan
« Intra-operator parallelism & intra-query parallelism
— Some operations may execute at subsets of workers
— Workers can execute multiple queries at the same time
* Inter-query parallelism
CSE 444 - Spring 2019 26

Parallel Query Execution

SHUFFLE o R
Consumer

Worker 1

SHUFFLE o R
Consumer

B . -

CSE 444 - Spring 2019

Worker 2

27

Parallel Query Evaluation

New operator: Shuffle
» Origin: Exchange operator from Volcano system
» Serves to re-shuffle data between processes
— Handles data routing, buffering, and flow control
» Two parts: ShuffleProducer and ShuffleConsumer
* Producer:
— Pulls data from child operator and sends to # consumers
— Producer acts as driver for operators below it in query plan
+ Consumer:

— Buffers input data from n producers and makes it available
to operator through getNext() interface

CSE 444 - Spring 2019 28

Parallel DBMSs

» Performance metrics
— Speedup: More nodes, same data -> higher speed
— Scaleup: More nodes, more data -> same speed
— Speed = query execution time

» Key challenges
— Start-up costs
— Interference
— Skew

CSE 444 - Spring 2019

29

Parallel Query Processing

How do we compute these operations on a shared-
nothing parallel db?

» Selection: 0a-123(R)

. Group-byi YA,sum(B)(R)
« Join: RX'S

Before we answer that: how do we store R (and S) on a
shared-nothing parallel db?

CSE 444 - Spring 2019 30

Horizontal Data Partitioning

Data: Servers:

CSE 444 - Spring 2019

31

Horizontal Data Partitioning

Data: Servers:
2 C P
K|A|B } ann ann [[2l=]
CSE 444 - Spring 2019 32

Horizontal Data Partitioning

Data: Servers:

K|A|B w[als Wals |

};r

Which tuples
go to what server?

CSE 444 - Spring 2019 33

Horizontal Data Partitioning

» Relation R split into P chunks Ry, ..., Re.1, stored at
the P nodes

» Block partitioned
— Each group of k tuples goes to a different node

» Hash based partitioning on attribute A:
— Tuple t to chunk h(t.A) mod P

» Range based partitioning on attribute A:
— Tuple tto chunkiif viy <tA<vy;
* For hash and range partitioning: Beware of skew

CSE 444 - Spring 2019 34

Horizontal Data Partitioning

All three choices are just special cases:
» For each tuple, compute bin = f(t)

« Different properties of the function f determine
hash vs. range vs. round robin vs. anything

CSE 444 - Spring 2019 35

Example: Teradata — Loading

A Customer Row is Inserted—l

Hashing A!gonthm produces
/1. A Hash Bucket
2. A Hash-ID

The Hash Bucket Points
to One AMP

Node 1 Node 2 Node 3 Node 4

AMP = “Access Module Processor” = unit of parallelism

CSE 444 - Spring 2019 36

Parallel Selection
Compute oa=v(R), or Ovi<a<v2(R)
» On a conventional database: cost = B(R)

* Q: What is the cost on a parallel database with
P processors ?
— Block partitioned
— Hash partitioned
— Range partitioned

CSE 444 - Spring 2019 37

Parallel Selection
Compute 0a=(R), or ovi<a<v2(R)
» On a conventional database: cost = B(R)

* Q: What is the cost on a parallel database with
P processors ? A: B(R) /P, but

— Block partitioned -- all servers do the work
— Hash partitioned -- some servers do the work
— Range partitioned -- some servers do the work

CSE 444 - Spring 2019 38

Basic Parallel GroupBy

Data: R(K,A,B,C) -- hash-partitioned on K
Query: yasum@e)(R)

Reshuffle R
on attribute A

CSE 444 - Spring 2019 39

Basic Parallel GroupBy

« Step 1: each server i partitions its chunk R; using
a hash function h(t.A) mod P: R, Ri1, .., Rip-1

« Step 2: server j computes ya, sum) ON
Roj R1j, ..., R

CSE 444 - Spring 2019 40

Speedup and Scaleup

« Consider:

— Query: Yasumc)(R)
— Runtime: dominated by reading chunks from disk

 |f we double the number of nodes P, what is the
new running time?

 If we double both P and the size of R, what is
the new running time?

CSE 444 - Spring 2019 41

Speedup and Scaleup

» Consider:
— Query: Yasumc)(R)
— Runtime: dominated by reading chunks from disk
< |f we double the number of nodes P, what is the
new running time?
— Half (each server holds %2 as many chunks)
< |f we double both P and the size of R, what is

the new running time?
— Same (each server holds the same # of chunks)

CSE 444 - Spring 2019 42

Announcements
» Lab 4 due Friday
* Quiz 3+4 Monday 3/11

« HW 6 released — due 3/18

CSE 444 - Spring 2019 43

Basic Parallel GroupBy

Can we do better?
* Sum?

* Count?

* Avg?

* Max?

* Median?

CSE 444 - Spring 2019

44

Basic Parallel GroupBy

Can we do better?

¢ Sum?

* Count? Distributive Algebraic Holistic
* Avg? 23:?:&:(2;;32; avgs(Sr)n?B)/count(B) medan(®)
+ Max? S o)

* Median?

YES

» Compute partial aggregates before shuffling

CSE 444 - Spring 2019 45

Basic Parallel GroupBy

Can we do better?

* Sum?

. Count? Distributive Algebraic Holistic
* Avg? iﬂﬁﬁi‘ﬁf;mﬁi’; avgs(sr)n(zB)/count(B) medan®)
+ Max? somaeamea)

* Median?

YES

» Compute partial aggregates before shuffling

{ MapReduce implements this as “Combiners”

Example Query with Group By

SELECT a, max(b) as topb
FROM R WHERE a >0

GROUP BY a
Machine 1 Machine 2 Machine 3
1/3of R csE18- ofifR2019 1/30f R 47

Machine 2

Machine 1

1/3of R csEB-efifg2019

Machine 3

1/3of R 48

Parallel Join: R xa-g S

- Data: R(K1,A, C), S(K2, B, D)
- Query: R(K1,A,C) x S(K2,B,D)

CSE 444 - Spring 2019 49

Parallel Join: R xa-g S

/ T T —
Each server computes
the join locally

Reshuffle R on R.A
and Son S.B

» Data: R(K1,A, C), S(K2, B, D)
* Query: R(K1,A,C) x S(K2,B,D)

Initially, both R and S are horizontally partitioned on K1 and K2

CSE 444 - Spring 2019

Parallel Join: R xa-g S

* Step 1
— Every server holding any chunk of R partitions its
chunk using a hash function h(t.A) mod P

— Every server holding any chunk of S partitions its
chunk using a hash function h(t.B) mod P

» Step 2:

— Each server computes the join of its local fragment
of R with its local fragment of S

CSE 444 - Spring 2019 51

Data: R(KLA, B), S(K2, B, C)
Query: R(K1,A,B) x S(K2,B,C)

Joinon R.B =8.B

Optimization for Small Relations

When joining Rand S
* IfIRI>>[S]
— Leave Rwhere itis
— Replicate entire S relation across nodes

 Also called a small join or a broadcast join

CSE 444 - Spring 2019 53

RT ST R2 S2

K1 |B kK2 |B K1 |B k2 |B
Local 1 20 201 |20 2 50 |D4101 |50
Join

3 |20 102 |50

4 20 M1 M2 202 |50
Shuffle ><

R1 S1 R2 S2

K1 |B k2 [B K1 |B k2 B
Partition | | 1 20 101 |50 3 20 201 |20

2 [50 102 |50 4 20 202 |50

M1 M2
CSE 444 - Spring 2019
Other Interesting Parallel
Join Implementation

Skew:

Reasons:

— Range-partition instead of hash
— Some values are very popular:

« Heavy hitters values; e.g. ‘Justin Bieber’

— Selection before join with different selectivities

» Some partitions generate more output tuples than

others

CSE 444 - Spring 2019

Some partitions get more input tuples than others

54

Some Skew Handling Techniques
If using range partition:

« Ensure each range gets same number of tuples
« Eg:{1,1,1,2,3,4,5,6}>[1,2]and [3,6]

« Eg-depth v.s. eg-width histograms

CSE 444 - Spring 2019 55

Some Skew Handling Techniques

Create more partitions than nodes
* And be smart about scheduling the partitions

* Note: MapReduce uses this technique

CSE 444 - Spring 2019 56

Some Skew Handling Techniques

Use subset-replicate (a.k.a. “skewedJoin”)

* Given R Mp=5 S

» Given a heavy hitter value RA ="V’
(i.e. ‘v’ occurs very many times in R)

« Partition R tuples with value ‘v’ across all nodes
e.g. block-partition, or hash on other attributes

» Replicate S tuples with value ‘v’ to all nodes

* R =the build relation

» S = the probe relation

CSE 444 - Spring 2019 57

Order(gid, item, date), Line(item, ...)

Example: Teradata — Query Execution

Find all orders from today, along with the items ordered

SELECT *
FROM Order o, Line i

WHERE o.item = i.item -

o.item = i.item

AND o.date = today() date = today()

Item i Order o

CSE 444 - Spring 2019 58

Order(Qid, item, date), Line(item, ...)

Query Execution

|
(o.ltem) @ (oritem)
date=today() date=today() date=today()
Order o Order o order o
AMP 1 AMP 2 AMP 3
CSE 444 - Spring 2019 59

Order(gid, item, date), Line(item, ...)

Query Execution

em i

CSE 444 - Spring 2019 60

Order(Qid, item, date), Line(item, ...)

Query Execution

o.item = i.item o.item = i.item o.item = i.item

AMP 1 AMP 2 AMP 3

contains all orders and all

lines where hash(item) = 3
contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSE 444 - Spring 2019 61

10

SELECT *
FROMR, S, T

Example 2

WHERE R.b =S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

130fR, S, T

Machine 2

AR

Machine 3

1/3 of R, ST

ORa-Tf>100

ORa-Tf>100

OR.a-Tf>100

\ Shuffling intermediate result from R < S

\

\

|

Shuffling R, S, and T

Machine 1

130fR, S, T

OR.a-Tf>100

Broadcasting S and T

(broadcas} Qroadcas

Machine 1

1/30ofR,S, T

(broadcas) Qroadcas

Machine 2

130ofR, S, T

CSE 444 - Spring 2019

(broadcasy Qroadcas

Machine 3

13 0ofR, S, T

64

|

Machine 2

130fR,S, T

CSE 444 - Spring 2019

Machine 3

1/30fR,S, T

11

