CSE 444: Database Internals

Lectures 20-21
Parallel DBMSs

CSE 444 - Spring 2019

What We Have Already Learned

- · Overall architecture of a DBMS
- Internals of query execution:
 - Data storage and indexing
 - Buffer management
 - Query evaluation including operator algorithms
 - Query optimization
- · Internals of transaction processing:
 - Concurrency control: pessimistic and optimistic
 - Transaction recovery: undo, redo, and undo/redo

CSE 444 - Spring 2019

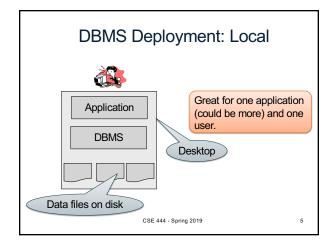
Where We Are Headed Next

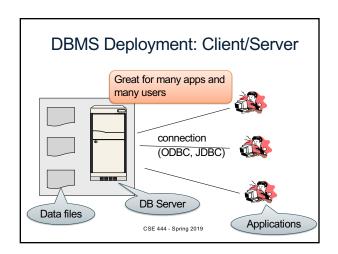
- · Scaling the execution of a query
 - Parallel DBMS
 - MapReduce
 - Spark and Myria
- Scaling transactions
 - Distributed transactions
 - Replication
- Scaling with NoSQL and NewSQL

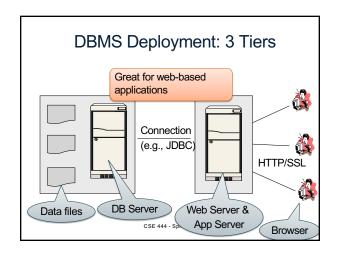
CSE 444 - Spring 2019

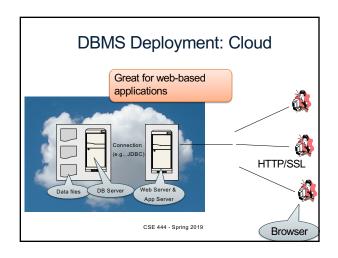
Reading Assignments

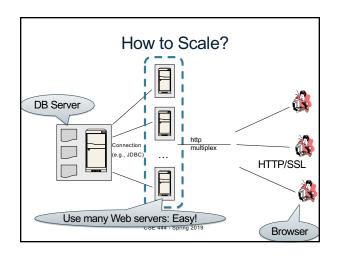
- · Main textbook Chapter 20.1
- Database management systems.
 Ramakrishnan&Gehrke.
 Third Ed. Chapter 22.11

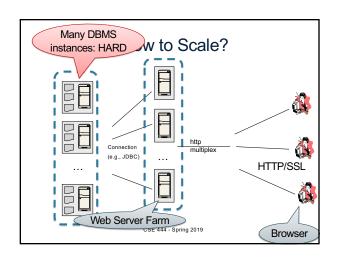






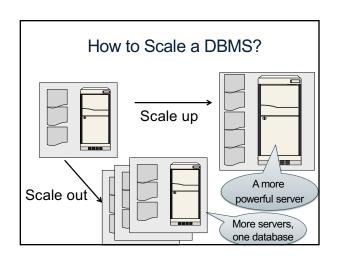






How to Scale?

- We can easily replicate the web servers and the application servers
- We cannot so easily replicate the database servers, because the database is unique
- We need to design ways to scale up the DBMS



What to scale?

- OLTP: Transactions per second
 - OLTP = Online Transaction Processing
- · OLAP: Query response time
 - OLAP = Online Analytical Processing

CSE 444 - Spring 2019

44 - Spring 2019 1

Scaling Transactions Per Second

- Amazon
- Facebook
- Twitter
- ... your favorite Internet application...
- · Goal is to scale OLTP workloads
- · We will get back to this next week

CSE 444 - Spring 2019

4.4

Scaling Single Query Response Time

- · Goal is to scale OLAP workloads
- That means the analysis of massive datasets

CSE 444 - Spring 2019

This Week: Focus on Scaling a Single Query

CSE 444 - Spring 2019

16

Big Data

- · Buzzword?
- · Definition from industry:
 - High Volume http://www.gartner.com/newsroom/id/1731916_
 - High Variety
 - High Velocity

CSE 444 - Spring 2019

Big Data

Volume is not an issue

- Databases do parallelize easily; techniques available from the 80's
 - Data partitioning
 - Parallel query processing
- SQL is embarrassingly parallel
- · We will learn how to do this

CSE 444 - Spring 2019

Spring 2019 18

Big Data

New workloads are an issue

- · Big volumes, small analytics
 - OLAP queries: join + group-by + aggregate
 - Can be handled by today's RDBMSs (e.g., Teradata)
- · Big volumes, big analytics
 - More complex Machine Learning, e.g. click prediction, topic modeling, SVM, k-means
 - Requires innovation Active research area

CSE 444 - Spring 2019

19

Data Analytics Companies

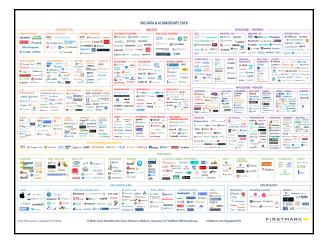
Fifteen years ago, explosion of db analytics companies

- Greenplum founded in 2003 acquired by EMC in 2010; A parallel shared-nothing DBMS (this lecture)

 Vertica founded in 2005 and acquired by HP in 2011; A parallel, column-store shared-nothing DBMS

 DATAllegro founded in 2003 acquired by Microsoft in 2008; A parallel shared-nothing DBMS
- parallel, shared-nothing DBMS
- Aster Data Systems founded in 2005 acquired by Teradata in 2011; A parallel, shared-nothing, MapReduce-based data processing system (in two lectures). SQL on top of MapReduce
- Netezza founded in 2000 and acquired by IBM in 2010. A parallel, shared-nothing DBMS.

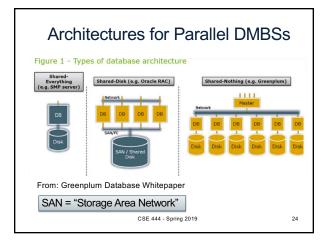
CSE 444 - Spring 2019



Two Fundamental Approaches to Parallel Data Processing

- · Parallel databases, developed starting with the 80s (this lecture)
 - For both OLTP (transaction processing)
 - And for OLAP (decision support queries)
- MapReduce, first developed by Google, published in 2004 (in two lectures)
 - Only for decision support queries

Today we see convergence of the two approaches



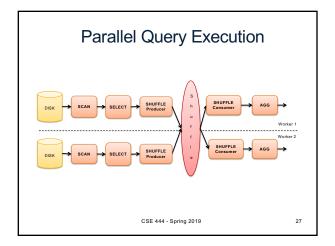
Our Focus: Shared-Nothing DBMS

Parallel Query Evaluation

- Multiple DBMS instances (= processes) also called "nodes" execute on machines in a cluster
 - One instance plays role of the coordinator
 - Other instances play role of workers
- · Applications interact with coordinator
- Workers execute queries
 - Typically all workers execute the same plan
 - · Intra-operator parallelism & intra-query parallelism
 - Some operations may execute at subsets of workers
 - Workers can execute multiple queries at the same time

Inter-query parallelism

CSE 444 - Spring 2019



Parallel Query Evaluation

New operator: Shuffle

- · Origin: Exchange operator from Volcano system
- · Serves to re-shuffle data between processes
 - Handles data routing, buffering, and flow control
- Two parts: ShuffleProducer and ShuffleConsumer
- Producer:
 - Pulls data from child operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
- · Consumer:
 - Buffers input data from n producers and makes it available to operator through getNext() interface

CSE 444 - Spring 2019

Parallel DBMSs

- Performance metrics
 - Speedup: More nodes, same data -> higher speed
 - Scaleup: More nodes, more data -> same speed
 - Speed = query execution time
- · Key challenges
 - Start-up costs
 - Interference
 - Skew

CSE 444 - Spring 2019 29

Parallel Query Processing

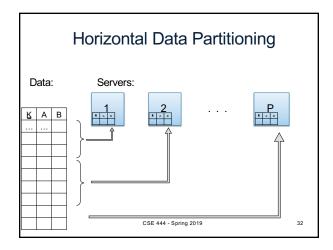
How do we compute these operations on a sharednothing parallel db?

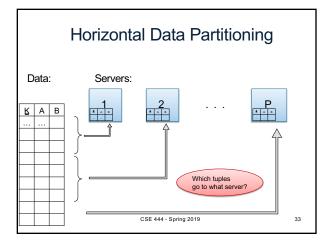
- Selection: σ_{A=123}(R)
- Group-by: γ_{A,sum(B)}(R)
- Join: R ⋈ S

Before we answer that: how do we store R (and S) on a shared-nothing parallel db?

CSE 444 - Spring 2019

Horizontal Data Partitioning Data: Servers: 1 2 ... P CSE 444-Spring 2019 31





Horizontal Data Partitioning

- Relation R split into P chunks R₀, ..., R_{P-1}, stored at the P nodes
- · Block partitioned
 - Each group of k tuples goes to a different node
- Hash based partitioning on attribute A:
 - Tuple t to chunk h(t.A) mod P
- Range based partitioning on attribute A:
 - Tuple t to chunk i if $v_{i-1} \le t.A \le v_i$
- · For hash and range partitioning: Beware of skew

CSE 444 - Spring 2019

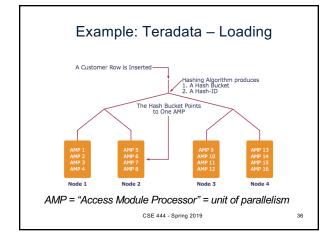
Horizontal Data Partitioning

All three choices are just special cases:

- For each tuple, compute bin = f(t)
- Different properties of the function *f* determine hash vs. range vs. round robin vs. anything

CSE 444 - Spring 2019

35



Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1<A< v2}(R)$

- On a conventional database: cost = B(R)
- Q: What is the cost on a parallel database with P processors?
 - Block partitioned
 - Hash partitioned
 - Range partitioned

CSE 444 - Spring 2019

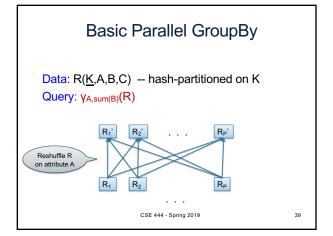
31

Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1<A< v2}(R)$

- On a conventional database: cost = B(R)
- Q: What is the cost on a parallel database with P processors?
 A: B(R) / P, but
 - Block partitioned
 -- all servers do the work
 - Hash partitioned-- some servers do the work
 - Range partitioned -- some servers do the work

CSE 444 - Spring 2019



Basic Parallel GroupBy

- Step 1: each server i partitions its chunk R_i using a hash function h(t.A) mod P: R_{i,0}, R_{i,1}, ..., R_{i,P-1}
- Step 2: server j computes $\gamma_{A,\;sum(B)}$ on $R_{0,j},\;R_{1,j},\;...,\;R_{P\text{-}1,j}$

CSE 444 - Spring 2019

Speedup and Scaleup

- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
- If we double both P and the size of R, what is the new running time?

CSE 444 - Spring 2019

Speedup and Scaleup

- · Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
 - Half (each server holds ½ as many chunks)
- If we double both P and the size of R, what is the new running time?
 - Same (each server holds the same # of chunks)

CSE 444 - Spring 2019

Announcements

- · Lab 4 due Friday
- Quiz 3+4 Monday 3/11
- HW 6 released due 3/18

CSE 444 - Spring 2019

5pring 2019 43

Basic Parallel GroupBy

Can we do better?

- Sum?
- · Count?
- · Avg?
- · Max?
- · Median?

CSE 444 - Spring 2019

Basic Parallel GroupBy

Can we do better?

- · Sum?
- Count?
- Avg? · Max?
- sum(a₁+a₂+...+a₉)= sum(sum(a₁+a₂+a₃)+ avg(B) = sum(B)/count(B) median(B) sum(a4+a5+a6)+ sum(a7+a8+a9))
- · Median?

YES

· Compute partial aggregates before shuffling

Distributive

CSE 444 - Spring 2019

Algebraio

Holistic

Basic Parallel GroupBy

Can we do better?

- · Sum?
- · Count?
- Avg?
- · Max?
- · Median?

· Compute partial aggregates before shuffling

Distributive

 $\begin{array}{c} sum(a_1+a_2+...+a_9)=\\ sum(sum(a_1+a_2+a_3)+\\ sum(a_4+a_5+a_6)+\\ sum(a_7+a_8+a_9)) \end{array}$

Holistic

median(B)

avg(B) = sum(B)/count(B)

MapReduce implements this as "Combiners"

Example Query with Group By

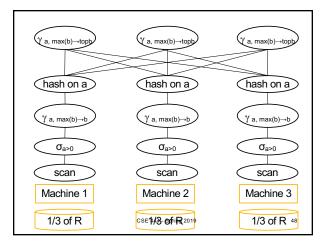
SELECT a, max(b) as topb FROM R WHERE a > 0 **GROUP BY a**

Machine 1 1/3 of R

Machine 2

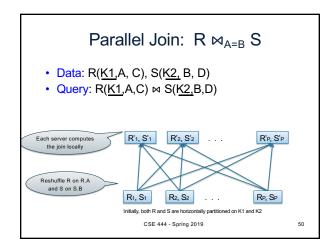
CSE**1/3-Of**ri**R**2019

Machine 3 1/3 of R 47



Parallel Join: R ⋈_{A=B} S

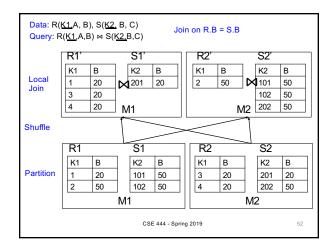
- Data: R(K1,A,C), S(K2,B,D)
- Query: R(<u>K1</u>,A,C) ⋈ S(<u>K2</u>,B,D)



Parallel Join: R ⋈_{A=B} S

- · Step 1
 - Every server holding any chunk of R partitions its chunk using a hash function h(t.A) mod P
 - Every server holding any chunk of S partitions its chunk using a hash function h(t.B) mod P
- Step 2:
 - Each server computes the join of its local fragment of R with its local fragment of S

CSE 444 - Spring 2019



Optimization for Small Relations

When joining R and S

- If |R| >> |S|
- Leave R where it is
 - Replicate entire S relation across nodes
- · Also called a small join or a broadcast join

CSE 444 - Spring 2019

Other Interesting Parallel Join Implementation

Skew:

- · Some partitions get more input tuples than others Reasons:
 - Range-partition instead of hash
 - Some values are very popular:
 - · Heavy hitters values; e.g. 'Justin Bieber'
 - Selection before join with different selectivities
- · Some partitions generate more output tuples than others

CSE 444 - Spring 2019

Some Skew Handling Techniques

If using range partition:

- Ensure each range gets same number of tuples
- E.g.: $\{1, 1, 1, 2, 3, 4, 5, 6\} \rightarrow [1,2]$ and [3,6]
- Eq-depth v.s. eq-width histograms

Some Skew Handling Techniques

Create more partitions than nodes

- · And be smart about scheduling the partitions
- · Note: MapReduce uses this technique

CSE 444 - Spring 2019

56

Some Skew Handling Techniques

Use subset-replicate (a.k.a. "skewedJoin")

- Given R ⋈_{A=B} S
- Given a heavy hitter value R.A = 'v' (i.e. 'v' occurs very many times in R)
- Partition R tuples with value 'v' across all nodes e.g. block-partition, or hash on other attributes
- Replicate S tuples with value 'v' to all nodes
- R = the build relation
- S = the probe relation

CSE 444 - Spring 2019

67

