CSE 444: Database Internals

Lectures 17-19
Transactions: Recovery

CSE 444 - Spring 2019

The Usual Reminders

HW3 is due tonight
Lab3 is due May 18
Quiz grades are out on Gradescope

HW4 is out — material covered this week

CSE 444 - Spring 2019 2

Readings for Lectures 17-19

Main textbook (Garcia-Molina)

« Ch.17.2-4, 18.1-3, 18.8-9
Second textbook (Ramakrishnan)
 Ch. 16-18

Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science
and Engineering, A. Tucker, ed., CRC Press,
Boca Raton, 1997.

CSE 444 - Spring 2019

Transaction Management

Two parts:
« Concurrency control: ACID
* Recovery from crashes: ACID

We already discussed concurrency control
You are implementing locking in lab3

Today, we start recovery

CSE 444 - Spring 2019

System Crash

Client 1:
BEGIN TRANSACTION
UPDATE Account1

SET balance= balance — 500 ! l

UPDATE Account2

SET balance = balance + 500
COMMIT

CSE 444 - Spring 2019

Recovery

Type of Crash

Prevention

Wrong data entry

Constraints and
Data cleaning

Disk crashes

Redundancy:
e.g. RAID, archive

Data center failures

Remote backups or
replicas

System failures:
e.g. power

System Failures

« Each transaction has internal state

* When system crashes, internal state is lost
— Don’t know which parts executed and which didn’t
— Need ability to undo and redo

CSE 444 - Spring 2019

=eap Buffer Manager Review

WRITE Page requests from higher-level code

Files and access methods
Buffer pool Buffer pool manager
Disk page
bag Main
Free frame memory
INPUT | choice of frame dictated
OUTPUT by replacement policy

1 page corresponds
to 1 disk block

Disk = collection i
of blocks

Data must be in RAM for DBMS to operate on it!
Buffer pool = table of <frame#, pageid> pairs

Buffer Manager Review

* Enables higher layers of the DBMS to
assume that needed data is in main memory

» Caches data in memory. Problems when
crash occurs:
— If committed data was not yet written to disk
— If uncommitted data was flushed to disk

CSE 444 - Spring 2019

Primitive Operations of

Transactions
READ(X,t)

— copy element X to transaction local variable t
WRITE(X,)

— copy transaction local variable t to element X

INPUT(X)

— read element X to memory buffer

OUTPUT(X)

— write element X to disk

CSE 444 - Spring 2019

11

Running Example
BEGIN TRANSACTION

READ(A,1);
t:=1"2; Initially, A=B=8.
WRlTE(A,t); Atomicity requires that either

. (MT its and A=B=16,
READ(B’t)’ (2) T ggrensmr:ost acrc])mmit and AZIiB=8.
t/\:/; Will look at various crash scenarios
CO What behavior do we want in each case”?

CSE 444 - Spring 2019 12

READ(A1); t := t*2; WRITE(A});
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A)

t:=t*2

WRITE(A1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

READ(A1); t := t*2; WRITE(A});
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A 1) 8 8 8 8

t:=t*2

WRITE(A1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

READ(A1); t := t*2; WRITE(A});
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)

COMMIT

READ(A1); t := t*2; WRITE(A});
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)

COMMIT

READ(A1); t := t*2; WRITE(A});
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)

COMMIT

READ(A1); t := t*2; WRITE(A});
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)

COMMIT

READ(A1); t := t*2; WRITE(A});
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

READ(A1); t := t*2; WRITE(A});
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A)
OUTPUT(B)
COMMIT

READ(A1); t := t*2; WRITE(A});
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B)
COMMIT

READ(A1); t := t*2; WRITE(A});
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT

Is this bad ?

Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 85\;
OUTPUT(B) 16 16 16 16 16

COMMIT

|s this bad ? Yes it's bad: A=16, B=8....
Action t Mem A | Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B, 1) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8%&
OUTPUT(B) 16 16 16 16 16
COMMIT 4

Is this bad ?

Action t MemA | MemB | Disk A | DiskB

INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8

N~z

OUTPUT(B) 16 16 16 16 1@5}%

COMMIT 5

|s this bad ? Yes it's bad: A=B=16, but not committed
Action t Mem A | Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A}) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 1655%&

COMMIT

Is this bad ?

Action t Mem A | MemB Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8

t:=t*2 16 8 8 8
WRITEAL | 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITEBH | 16 16 16 8 8= ci&
outPuTA) | 16 16 16 16 8
ouTPUT®B) | 16 16 16 16 16

COMMIT

|s this bad ? No: that's OK
Action t Mem A | Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8 L
WRITE(B, 1) 16 16 16 8 8 = Crash!
OUTPUTA) | 16 16 16 16 8 S
OUTPUT(B) 16 16 16 16 16
COMMIT 8

OUTPUT can also happen after COMMIT (details coming)
Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B, 1) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 o

OUTPUT can also happen after COMMIT (details coming)
Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B, 1) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8 =
OUTPUT(B) 16 16 16 16 16 o

Atomic Transactions

 FORCE or NO-FORCE

— Should all updates of a transaction be forced to
disk before the transaction commits?

« STEAL or NO-STEAL

— Can an update made by an uncommitted
transaction overwrite the most recent committed
value of a data item on disk?

CSE 444 - Spring 2019

31

Force/No-steal

 FORCE: Pages of committed
transactions must be forced to disk
before commit

 NO-STEAL.: Pages of uncommitted
transactions cannot be written to disk

Easy to implement (how?) and ensures atomicity

CSE 444 - Spring 2019 32

No-Force/Steal

 NO-FORCE: Pages of committed
transactions need not be written to disk

 STEAL.: Pages of uncommitted
transactions may be written to disk

In either case, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

CSE 444 - Spring 2019 33

Write-Ahead Log (WAL)

The Log: append-only file containing log records
* Records every single action of every TXN

* Forces log entries to disk as needed

 After a system crash, use log to recover

Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

CSE 444 - Spring 2019 34

Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

CSE 444 - Spring 2019 35

UNDO Log

FORCE and STEAL

CSE 444 - Spring 2019

36

Undo Logging

Log records
« <START T>

— transaction T has begun

e« <COMMIT T>

— T has committed

« <ABORT T>
— T has aborted
o <T,X,v>
— T has updated element X, and its o/d value was v

— Idempotent, physical log records
CSE 444 - Spring 2019

37

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT

<COMMIT T>

38

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8 %
OUTPUT(B) 16 16 16 16 16 =
COMMIT <COMMIT T>
WHAT DO WE DO ? >

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A) 8 8 8 8
t=t*2 16 8 8 8
WRITEAL) | 16 16 8 8 <TA,8>
INPUT(B) | 16 16 8 8 8
READ(B,) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITEB,t) | 16 16 16 8 8 <T,B,8>
OUTPUT(A)| 16 16 16 16 8
OUTPUT(B)| 16 16 16 16 16 %
COMMIT <COMMIT T> |
WHAT DO WE DO ? || We UNDO by setting B=8 and A=8

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ? {j:%

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>
What do we do now ? Nothing: log contains COW

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
ti=t-2 16 8 |~ P -
WRITE(A,t) 16\ e/ L — <T.A,8>
w= Crash!
e -
t:=t*2/ - N\SA 8
WRITE(B,) 161 16 16 8 8 <T,B,8>
OUTPUT(A)| 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT

43

After Crash

» This is all we see (for example):

LEYSNEETN | <START T>

8 16 <TAS8>
<T,B,8>

CSE 444 - Spring 2019

After Crash

» This is all we see (for example):
* Need to step through the log

EEYSEEEMN | <START T>

8 16 <TAS8>
<T,B,8>

CSE 444 - Spring 2019

After Crash

» This is all we see (for example):
* Need to step through the log

EEYSEEEMN | <START T>

8 16 <TAS8>
<T,B,8>

 \What direction?

CSE 444 - Spring 2019

46

After Crash

This is all we see (for example):
Need to step through the log

EEYSEEEMN | <START T> ‘

° 10 <T,A,8>
<T,B,8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time

47

After Crash

This is all we see (for example):
Need to step through the log

EEYSEEEMN | <START T> ‘

° 10 <T,A,8>
<T,B,8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time

48

After Crash

This is all we see (for example):
Need to step through the log

EEYSEEEMN | <START T> ‘

° = <T,A,8>
<T,B,8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time

49

After Crash

This is all we see (for example):
Need to step through the log

EEYSEEEMN | <START T> ‘

5 . <T,A,8>
<T,B,8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time

50

After Crash

This is all we see (for example):
Need to step through the log

EEYSEEEMN | <START T> ‘

8 5 <TA,8>
<T,B,8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time

51

After Crash

If we see NO Commit statement:
— We UNDO both changes: A=8, B=8

— The transaction is atomic, since none of its actions have
been executed

In we see that T has a Commit statement
— We don’t undo anything

— The transaction is atomic, since both it's actions have been
executed

CSE 444 - Spring 2019

52

Recovery with Undo Log
After system’s crash, run recovery manager

 Decide for each transaction T whether it is
completed or not

— <START T>....<COMMIT T>.... =yes
— <START T>...<ABORT T>....... = yes
—<START 1>, = Nno

* Undo all modifications by incomplete

transactions
CSE 444 - Spring 2019

53

Recovery with Undo Log

Recovery manager:

* Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>:if T is not completed

then write X=v to disk

else ignore
<START T>: ignore

CSE 444 - Spring 2019

54

Recovery with Undo Log

<T16,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4v4>
<COMMIT T5>
<T3,X3,v3>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?

Question 3:
What happens if second
crash during recovery?

<T2,X2,V2§\% 55

Recovery with Undo Log

<T16,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4v4>
<COMMIT T5>
<T3,X3,v3>

Question1: Which updates
are undone ?

Question 2:

How far back do we need to
read in the log ?

To the beginning.

Question 3:
What happens if second
crash during recovery?

<T2,X2,V2§\}C//\:/j§ 56

Recovery with Undo Log

Question1: Which updates
are undone ?

<T6,X6,v6>
Question 2:
How far back do we need to

.<“START 15> read in the log ?
<START T4> To the beginning.

<T1,X1,v1>

<T5,X5,v5> Question 3:

<T4,X4.v4> What happens if second
<COMMIT T5>| crash during recovery?
<T3,X3,v3> No problem! Log records are

<T2 X2 Vzia:f%empotent. Can reapply.
’ , Crash ! o7

Action t MemA | Mem B | Disk A | DiskB UNDO Log
’ <START T>
INPUT(A) When must 8
READ(A1) 8 K we force pages /8
to disk ?
t:=t*2 16 8 8
N
WRITE (A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8 @
-
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OU?HDT(A) 16 16 16 16 8 W
)
oujPLUT(B) 0 16 16 16 16 16
COMMIT <COMMIT T>

CSE 444 - Spring 2019

58

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 /< <T,A,8> >
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 8 8 8
WRITE(B,1) 16 16 8 8 /(<T,B,8> >
\/OUTPUT(§ 16 16 | 16— 16 8
OUTPUT(B) 16 16 16 16
COMMIT | FO <COMMIT T

RULES: log entry before OUTPUT before COMMIT

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must
be written to disk before <COMMIT T>

 Hence: OUTPUTs are done early,
before the transaction commits

CSE 444 - Spring 2019 60

Checkpointing

Checkpoint the database periodically

» Stop accepting new transactions

« Wait until all current transactions complete
* Flush log to disk

» Write a <CKPT> log record, flush

e Resume transactions

CSE 444 - Spring 2019 61

Undo Recovery with
Checkpointing

During recovery,
Can stop at first
<CKPT>

<T9,X9,v9>

(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

> other transactions

> transactions T2,T3,T4,T5

62

Nonquiescent Checkpointing

* Problem with checkpointing: database
freezes during checkpoint

* Would like to checkpoint while database
IS operational

* |dea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

CSE 444 - Spring 2019 63

Nonquiescent Checkpointing

* Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active
transactions. Flush log to disk

» Continue normal operation

 When all of T1,...,Tk have completed,
write <END CKPT>, flush log to disk

CSE 444 - Spring 2019 64

Undo Recovery with
Nonquiescent Checkpointing

>earlier transactions plus
Need to read - T4, 75,76

Back to start of

T4, T5, T6 .<.\.START CKPT T4, T5, T6> <
| T4, T5, T6, plus
<END CKPT> later transactions

» later transactions

65

Undo Recovery with
Nonquiescent Checkpointing

>earlier transactions plus
Need to read - T4, 75,76

Back to start of

T4, T5, T6 .<.\.START CKPT T4, T5, T6> <
| T4, T5, T6, plus
<END CKPT> later transactions

» later transactions

Q: do we need
<END CKPT> ? J 66

Undo Recovery with
Nonquiescent Checkpointing

>earlier transactions plus
Need to read - T4, 75,76

Back to start of
T4, T5, TG .<“START CKPT T4, T5, T6> <
>T4, 15, T6, plus
<END CKPT> later transactions

J

\

! later transactions

Q: do we need
<END CKPT> Not really, it's implicit in seeing T4,T5,T6 corsmits

Implementing ROLLBACK

 Recall: a transaction can end in COMMIT
or ROLLBACK

 |ldea: use the undo-log to implement
ROLLBACK

* How ?
— LSN = Log Sequence Number

— Log entries for the same transaction are
iInked, using the LSN’s

— Read log in reverse, using LSN pointers
CSE 444 - Spring 2019 68

<T9,X9,v9>

(all completed)
<CKPT>
<START T2
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v56>
<T2,X1,v2>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

REDO Log

NO-FORCE and NO-STEAL

CSE 444 - Spring 2019

70

Action t Mem A | Mem B | Disk A | DiskB
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

CSE 444 - Spring 2019

71

|s this bad ?

Action t Mem A | Mem B | Disk A | DiskB
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16
OUTPUT(B) 16 16 16 16

8§Y Crash!
16

CSE 444 - Spring 2019

72

Is this bad ? Yes, it's bad: A=16, B=8
Action t Mem A | Mem B | Disk A Disk B
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8 v/
OUTPUT(B) 16 16 16 16 16

CSE 444 - Spring 2019 73

|s this bad ?

Action t Mem A | Mem B | Disk A | DiskB

READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

COMMIT S

OUTPUT(A) 16 16 16 16 8 =
OUTPUT(B) 16 16 16 16 16

CSE 444 - Spring 2019

74

Yes, it's bad: lost update

Is this bad ?
Action t Mem A | Mem B | Disk A | DiskB
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
COMMIT S
OUTPUT(A) 16 16 16 16 8 =
OUTPUT(B) 16 16 16 16 16

CSE 444 - Spring 2019

75

|s this bad ?

Action t Mem A | Mem B | Disk A | DiskB
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

CSE 444 - Spring 2019

76

Is this bad ? No: that's OK.
Action t Mem A | Mem B | Disk A | DiskB
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

CSE 444 - Spring 2019

77

Redo Logging

One minor change to the undo log:

« <T,X,v>=T has updated element X, and
its new value is v

CSE 444 - Spring 2019 78

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

CSE 444 - Spring 2019

79

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 el
OUTPUT(B) 16 16 16 16 16 W

How do we recover ?

CSE 444 - Spring 2019

80

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 el
OUTPUT(B) 16 16 16 16 16 W

How do we recover ? |

We REDO by setting A=16 and B=16

Recovery with Redo Log

After system’s crash, run recovery manager

« Step 1. Decide for each transaction T whether
it is committed or not
— <START T>....<COMMIT T>.... =yes
— <START T>....<ABORT T>....... = Nno
— <START T>. e =no
« Step 2. Read log from the beginning, redo all

updates of committed transactions

CSE 444 - Spring 2019 82

Recovery with Redo Log

<START T1>
<T1,X1,v1>

<START T2> sh :
<T2. X2. v2> ow actions

<START T3> during recovery
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>

<T1,X5v5> |

CSE 444 - Spring 2019 83

Nonquiescent Checkpointing

* Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active txn’s

 Flush to disk all blocks of committed
transactions (dirty blocks)

 Meantime, continue normal operation

 When all blocks have been written, write
<END CKPT>

END CKPT has different meaning here than in Undo log

CSE 444 - Spring 2019 84

Nonquiescent Checkpointing

Step 1: look for
The last
<END CKPT>

All OUTPUTs
of T1 are
known to be on disk

Cannot
use

—

<START T1>
<COMMIT T1>
<START T4>

<START CKPT T4, T5, T6>

<END CKPT>

,.<.éTART CKPT T9, T10>

Step 2: redo
from the
earliest
start of

T4, T5, T6
ignoring
transactions
committed
earlier

85

Action t |MemA |mM————a | DiskB | REDO Log
/ When must \ <START T>
READ(A1) 3 g\ we force pages /g
to disk ?
b=t 16 8 8
Z N\
WRITEAL | 16 16 8 8 <TA 16>
READBH | 8 16 8 8 8
b=t 16 16 8 8 8 @)
O
WRITEBH | 16 16 16 8 8 <TB.15>
COMMIT <COMMIT T>
OUTRUT(A) | 16 16 16 16 8
=\
OUTEfLLT(B)TZJD?/ 16 16 16 16 16

CSE 444 - Spring 2019

86

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READAL | 8 8 8 8
t=t2 16 8 8 8
WRITEAL | 16 16 8 8 <TA,16>
READBLY) | 8 16 8 8 8
t=t2 16 16 8 8 8
WRITEBH | 16 16 16 8 8 <T.B.16>
COMMIT NO-STEAL | | TccommiT
@TPUT(A) 16 6 | 16 | 46— 8 |
OUTPUT(B) 16 16 16 16

RULE: OUTPUT after COMMIT

87

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk

before OUTPUT(X)
NO-STEAL

« Hence: OUTPUTs are done Jate

CSE 444 - Spring 2019 88

Comparison Undo/Redo

Steal/Force

* Undo logging:
— OUTPUT must be done early

— If <COMMIT T> is seen, T definitely has written all its data to
disk (hence, don’t need to redo) — inefficient

* Redo logging No-Steal/No-Force

— OUTPUT must be done late

— If <COMMIT T> is not seen, T definitely has not written any
of its data to disk (hence there is not dirty data on disk, no
need to undo) — inflexible

* Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

Steal/No-Force

CSE 444 - Spring 2019 90

Undo/Redo Logging

Log records, only one change

« <T,X,u,v>=T has updated element X, its
old value was u, and its new value is v

CSE 444 - Spring 2019 91

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

CSE 444 - Spring 2019 92

Action T MemA | Mem B | Disk A Disk B Log
<START T>
REAT(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT 93

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
* Redo all committed transaction, top-down
* Undo all uncommitted transactions, bottom-up

CSE 444 - Spring 2019 94

Recovery with Undo/Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

CSE 444 - Spring 2019

4

A

95

ARIES

CSE 444 - Spring 2019

96

Aries

ARIES pieces together several techniques into a
comprehensive algorithm

Developed at IBM Almaden, by Mohan
IBM botched the patent, so everyone uses it now

Several variations, e.g. for distributed
transactions

CSE 444 - Spring 2019 97

Log Granularity
Two basic types of log records for update operations

* Physical log records
— Position on a particular page where update occurred
— Both before and after image for undo/redo logs
— Benefits: Idempotent & updates are fast to redo/undo

* Logical log records
— Record only high-level information about the operation
— Benefit: Smaller log
— BUT difficult to implement because crashes can occur in
the middle of an operation

CSE 444 - Spring 2019 98

ARIES Recovery Manager

Log entries:

« <START T> --when T begins

« Update: <T,X,u,v>
— T updates X, old value=u, new value=v
— Logical description of the change

e <COMMIT T> or <ABORT T> then <END>
e <CLR> - weé’ll talk about them later.

CSE 444 - Spring 2019 100

ARIES Recovery Manager

Rule:

e |f T modifies X, then <T,X,u,v> must be
written to disk before OUTPUT(X)

We are free to OUTPUT early or late w.r.t
commits

CSE 444 - Spring 2019 101

LSN = Log Sequence Number
 LSN = identifier of a log entry

— Log entries belonging to the same TXN are linked
with extra entry for previous LSN

» Each page contains a pageLSN:
— LSN of log record for latest update to that page

CSE 444 - Spring 2019 102

ARIES Data Structures

* Active Transactions Table

— Lists all active TXN's

— For each TXN: lastLSN = its most recent update LSN
* Dirty Page Table

— Lists all dirty pages

— For each dirty page: recoveryLSN (recLSN)= first LSN
that caused page to become dirty

 Write Ahead Log
— LSN, prevLSN = previous LSN for same txn

CSE 444 - Spring 2019 103

ARIES Data Structures

Dirty pages
pagelD recLSN
P5 102
P6 103
P7 101

Active transactions

transiD lastLSN
T100 104
T200 103

Log (WAL)
LSN | prevLSN |transiD | pagelD |Log entry
101 |- T100 P7
102 |- T200 P5
103 | 102 T200 P6
104 | 101 T100 P5
Buffer Pool
P8 P2
P5 P6 P7
PageLSN=104 | PageLSN=103 | PageLSN=101

ARIES Normal Operation

T writes page P
 What do we do ?

CSE 444 - Spring 2019 105

ARIES Normal Operation

T writes page P
 What do we do ?

* Write <T,P,u,v> in the Log
 pageLSN=LSN

* prevLSN=lastLSN

* lastLSN=LSN

* recLSN=if isNull then LSN

CSE 444 - Spring 2019 106

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* What do we do ?

Buffer manager wants INPUT(P)
* What do we do ?

CSE 444 - Spring 2019 107

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* Flush log up to pageLSN

« Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

* \What do we do ?

CSE 444 - Spring 2019 108

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* Flush log up to pageLSN

« Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

* Create entry in Dirty Pages table
recLSN = NULL

CSE 444 - Spring 2019 109

ARIES Normal Operation

Transaction T starts
« What do we do ?

Transaction T commits/aborts
« What do we do ?

CSE 444 - Spring 2019 110

ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

 New entry T in Active TXN;
lastLSN = null

Transaction T commits
« What do we do ?

CSE 444 - Spring 2019 111

ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

 New entry T in Active TXN;
lastLSN = null

Transaction T commits
* Write <COMMIT T> in the log

* Flush log up to this entry
* Write <END>

CSE 444 - Spring 2019 112

Checkpoints

Write into the log

» Entire active transactions table
» Entire dirty pages table

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

CSE 444 - Spring 2019 113

Announcements

 Lab 4 out tomorrow

 Lab 5 due dates extended

— No late days allowed (will take that into
consideration when setting deadline)

« HW 6 released tomorrow

— On parallel database concepts
CSE 444 - Spring 2019 114

ARIES Recovery

1. Analysis pass
— Figure out what was going on at time of crash
— List of dirty pages and active transactions
2. Redo pass (repeating history principle)
— Redo all operations, even for transactions that will not commit
— Get back to state at the moment of the crash

3. Undo pass
— Remove effects of all uncommitted transactions
— Log changes during undo in case of another crash during undo

CSE 444 - Spring 2019 115

1. Analysis Phase

« Goal
— Determine point in log where to start REDO

— Determine set of dirty pages when crashed
« Conservative estimate of dirty pages

— ldentify active transactions when crashed

* Approach

— Rebuild active transactions table and dirty pages table
— Reprocess the log from the checkpoint

* Only update the two data structures
— Compute: firstLSN = smallest of all recoveryLSN

CSE 444 - Spring 2019 117

1. Analysis Phase

Log Checkpoint (crash)

|

firstLSN= 772—

Where do we start
the REDO phase ?

Dirty
pages

pagelD |recLSN

Active transID | lastLSN

txn

CSE 444 - Spring 2019 118

1. Analysis Phase

Log

Checkpoint

(crash)

Dirty
pages

Active
txn

|

firstLSN=ntin(rec

pagelD

recLSN

m

transiD

lastLSN

CSE 444 - Spring 2019

119

1. Analysis Phase

Lo
g Checkpoint
(crash)

|

firstLSN ‘//1
Dirty
pagelD |recL
ecLSN eplay I ceip 11
| pagelD Ir;c:l:s_ﬁ_:

pages
. T
history - I
A i_ ______ i _“i
ctive |tran _ . I
Ac sID | lastLSN T :
ransip Tiaci
transiD | astLSN |
F—— | _“:
__I_ _____ I
| ——I
| I

2. Redo Phase

Main principle: replay history

* Process Log forward, starting from
firstLSN

 Read every log record, sequentially

* Redo actions are not recorded in the log
* Needs the Dirty Page Table

CSE 444 - Spring 2019 121

2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
* Redo the action P=u and WRITE(P)
* Only redo actions that need to be redone

CSE 444 - Spring 2019 122

2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
 If P is not in Dirty Page then no update
* If recLSN > LSN, then no update

* Read page from disk:
If pageLSN >= LSN, then no update

* Otherwise perform update

CSE 444 - Spring 2019 123

2. Redo Phase: Detalls

What happens if system crashes during
REDO ?

CSE 444 - Spring 2019 124

2. Redo Phase: Detalls

What happens if system crashes during
REDO ?

We REDO again! The pageLSN will ensure
that we do not reapply a change twice

CSE 444 - Spring 2019 125

3. Undo Phase

» Cannot “unplay” history, in the same
way as we “replay” history

« WHY NOT ?

CSE 444 - Spring 2019 126

3. Undo Phase

» Cannot “unplay” history, in the same
way as we “replay” history

« WHY NOT ?

— Undo only the loser transactions

— Need to support ROLLBACK: selective
undo, for one transaction

* Hence, logical undo v.s. physical redo

CSE 444 - Spring 2019 127

3. Undo Phase

Main principle: “logical” undo
« Start from end of Log, move backwards
* Read only affected log entries

* Undo actions are written in the Log as special
entries: (Compensating Log Records)

are redone, but never undone

CSE 444 - Spring 2019 128

3. Undo Phase: Detalls

 “Loser transactions” = uncommitted
transactions in Active Transactions Table

« ToUndo = set of lastLSN of loser transactions

CSE 444 - Spring 2019 129

3. Undo Phase: Detalls

While ToUndo not empty:

« Choose most recent (largest) LSN in ToUndo

« If LSN = regular record <T,P,u,v>:
— Write a CLR where CLR.undoNextLSN = LSN.prevLSN
— Undo v

 |[fLSN = CLR record:

— Don’tundo!

e if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log

CSE 444 - Spring 2019 130

3. Undo Phase: Detalls

What happens if system crashes during
UNDO ?

CSE 444 - Spring 2019 132

3. Undo Phase: Detalls

What happens if system crashes during
UNDO ?

We do not UNDO again ! Instead, each CLR
iIs a REDO record: we simply redo the
undo

CSE 444 - Spring 2019 133

