CSE 444: Database Internals

Lectures 13
Transaction Schedules

CSE 444 - Spring 2019

About Lab 3

* Inlab 3, we implement transactions
» Focus on concurrency control
— Want to run many transactions at the same time
— Transactions want to read and write same pages
— Will use locks to ensure conflict serializable execution
— Use strict 2PL
* Build your own lock manager
— Understand how locking works in depth
— Ensure transactions rather than threads hold locks

« Many threads can execute different pieces of the same transaction
« Need to detect deadlocks and resolve them by aborting a transaction

— But use Java synchronization to protect your data structures

CSE 444 - Spring 2019

Announcements

* Lab 2 due tomorrow night 11pm

* HW 5 due Monday in class on 11pm
on Gradescope

* Quiz 1+2 Wednesday

CSE 444 - Spring 2019 2

Motivating Example

Client 1:

UPDATE Budget Client 2:

SET money=money-100 SELECT sum(money)

WHERE pid = 1 FROM Budget

UPDATE Budget

SET money=money+60 Would like to treat

WHERE pid =2 each group of
instructions as a unit

UPDATE Budget

SET money=money+40

WHERE pid = 3 4

Transaction

Definition: a transaction is a sequence of updates to the
database with the property that either all complete,
or none completes (all-or-nothing).

START TRANSACTION May be omitied
first SQL query
[SQL statements] starts txn

COMMIT or ROLLBACK (=ABORT)

In ad-hoc SQL: each statement = one transaction
This is referred to as autocommit

Motivating Example

START TRANSACTION
UPDATE Budget SELECT sum(money)
FROM Budget

SET money=money-100
WHERE pid = 1

UPDATE Budget

With autocommit and

without START TRANSACTION,
each SQL command

is a transaction

SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

COMMIT_(or ROLLBACK)

CSE 444 - Spring 2019 6

ROLLBACK

« If the app gets to a place where it can’t complete
the transaction successfully, it can execute
ROLLBACK

» This causes the system to “abort” the transaction

— Database returns to a state without any of the
changes made by the transaction

» Several reasons: user, application, system

CSE 444 - Spring 2019 7

Transactions

* Major component of database systems

« Critical for most applications; arguably more so
than SQL

« Turing awards to database researchers:
— Charles Bachman 1973
— Edgar Codd 1981 for inventing relational dbs
— Jim Gray 1998 for inventing transactions
— Mike Stonebraker 2015 for INGRES and Postgres

« And many other ideas after that

CSE 444 - Spring 2019 8

ACID Properties

CSE 444 - Spring 2019 9

ACID Properties

+ Atomicity: Either all changes performed by
transaction occur or none occurs

+ Consistency: A transaction as a whole does not
violate integrity constraints

* Isolation: Transactions appear to execute one
after the other in sequence

+ Durability: If a transaction commits, its changes
will survive failures

CSE 444 - Spring 2019 10

What Could Go Wrong?

Why is it hard to provide ACID properties?

» Concurrent operations
— Isolation problems
— We saw one example earlier
« Failures can occur at any time

— Atomicity and durability problems
— Later lectures

» Transaction may need to abort

CSE 444 - Spring 2019 1"

Terminology Needed For Lab 3
Buffer Manager Policies
» STEAL or NO-STEAL

— Can an update made by an uncommitted transaction overwrite
the most recent committed value of a data item on disk?

» FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk before the
transaction commits?

+ Easiest for recovery: NO-STEAL/FORCE (lab 3)
* Highest performance: STEAL/NO-FORCE (lab 4)
* We will get back to this next week

CSE 444 - Spring 2019 12

Transaction Isolation

CSE 444 - Spring 2019

Concurrent Execution Problems

» Write-read conflict: dirty read, inconsistent read
— A transaction reads a value written by another transaction
that has not yet committed
» Read-write conflict: unrepeatable read
— A transaction reads the value of the same object twice.

Another transaction modifies that value in between the
two reads

» Write-write conflict: lost update

— Two transactions update the value of the same object.
The second one to write the value overwrites the first

Schedules

A schedule is a sequence
of interleaved actions
from all transactions

CSE 444 - Spring 2019

change
CSE 444 - Spring 2019 14
Aand B are elements
Exam p| in the database
tand s are variables
in tx source code
T T2

READ(A,t) READ(A, s)
t:=t+100 s:=8*2
WRITE(A,t) WRITE(A,s)
READ(B,t) READ(B,s)
t:=t+100 s:=8%2
WRITE(B,t) WRITE(B,s)

CSE 444 - Spring 2019 16

A Serial Schedule

A=2
T T2 B=2
READ(A,)
t:= t+100
WRITE(A, t)
READ(B, 1)
t:= t+100
WRITE(B,t) A=102
READ(As) |B=102
s:=8*2
WRITE(A,s)
READ(B,s)
s =82 —
WRITE(B,s) ';\ B 281

CSE 444 - Spring 2019

A Serial Schedule

A=2
T T2 B=2
READ(AS)
s:=8"2
WRITE(A,s)
READ(B,s)
s:=8"2
WRITEBs) |A=4
READ(A, 1) B=4
t:= t+100
WRITE(A, t)
READ(B, 1)
t:= t+100 A=104
WRITE(B,t) B =104

CSE 444 - Spring 2019 18

Serializable Schedule

A schedule is serializable if it is
equivalent to a serial schedule

CSE 444 - Spring 2019 19

A Serializable Schedule

A=2
T1 T2 B=2
READ(A, t) -
t:=t+100 B
WRITE(A, t) B=2
READ(A,s) -
s =5 A=204
WRITE(As) [B=2
READ(B, t) —
t:= t+100 A=204
WRITE(B,t) B =102
READ(B,s)
This is a serializable schedule. | g :=g*2 A=204
This is NOT a serial schedule WRITE(B,s) |B =204

CSE 444 - Spring 2019 20

A Non-Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)
READ(A,s)
s =82
WRITE(A,s)
READ(B,s)
s =82
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,t)

CSE 444 - Spring 2019

Serializable Schedules

* The role of the scheduler is to ensure that the
schedule is serializable

Q: Why not run only serial schedules ?
l.e. run one transaction after the other ?

CSE 444 - Spring 2019 22

Serializable Schedules

* The role of the scheduler is to ensure that the
schedule is serializable

Q: Why not run only serial schedules ?
l.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may schedule TXNs serially

CSE 444 - Spring 2019 23

Still Serializable, but...

T T2
READ(A, t)
t:=1t+100
WRITE(A, t)
READ(A,s)

; Al s:=s+200
gchedule |_s serializable WRITE(As)
ecause t=t+100 and READ(B;s)
s=5+200 commute s=s+ 200

WRITE(B,s)
READ(B, t)
t:=1t+100
WRITE(B,t)

...we don’t expect the scheduler to schedule this

To Be Practical

* Assume worst case updates:

— Assume cannot commute actions done by transactions
» Therefore, we only care about reads and writes

— Transaction = sequence of R(A)'s and W(A)'s

Tq: r1(A); wa(A); 1(B); w(B)
Ta: ra(A); Wa(A); r2(B); wa(B)

N
o

CSE 444 - Spring 2019

Conflicts

» Write-Read — WR
* Read-Write — RW
* Write-Write — WW

CSE 444 - Spring 2019 26

Conflict Serializability

Conflicts:
Two actions by same transaction T;: ri(X); wi(Y)

I

Two writes by Ti, Tj to same element | wi(X); wi(X
i(X); 1i(X

Read/write by T;, T to same element WiX); 1i(X)

ri(X); wi(X)

CSE 444 - Spring 2019 27

Conflict Serializability

Definition A schedule is conflict serializable
if it can be transformed into a serial
schedule by a series of swappings

of adjacent non-conflicting actions

» Every conflict-serializable schedule is serializable
» The converse is not true in general

Conflict Serializability

Example:
11(A); Wi(A); r2(A); wa(A); r1(B); wi(B); r2(B); wa(B) |

N
©

CSE 444 - Spring 2019

Conflict Serializability
Example:
[r1(A); wi(A); ra(A); wa(A); r1(B); wa(B); r2(B); wa(B) |
<

11(A); wi(A); r1(B); wi(B); ra(A); wa(A); r2(B); wa(B) |

CSE 444 - Spring 2019 30

Conflict Serializability
Example:
[r1(A); wa(A); ra(A); [wa(A); r1(B) wi(B); ra(B); wa(B) |
-

r1(A); wi(A); r1(B); wi(B); ra(A); wa(A); r2(B); wa(B) |

CSE 444 - Spring 2019 31

Conflict Serializability

Example:
11(A); Wi(A); r2(A); Wa(A); r1(B)] wi(B); r2(B); wa(B) |

11(A); W1(A); ra(A); r1(B); wa(A); wi(B); ra(B); wa(B) |
<

r1(A); wi(A); r1(B); wi(B); ra(A); wa(A); r2(B); wa(B) |

CSE 444 - Spring 2019 32

Conflict Serializability

Example:
11(A); Wi(A); r2(A); (Wa(A); r1(B)] wi(B); r2(B); wa(B) |

r1(A); wa(A){r2(A); r1(B); [wa(A); wi(B); r2(B); w2(B) |
-

11(A); wa(A); r1(B); wi(B); ra(A); wa(A); r2(B); wa(B) |

CSE 444 - Spring 2019 33

Conflict Serializability

Example:
[r1(A); Wi (A); ra(A); wa(A); r1(B)j wa(B); r2(B); wa(B) |

11(A); Wa(A){ra(A); r1(B);[wa(A); wi(B); ra(B); wa(B) |
[r1(A); wa(A); r1(B); ra(A); Wa(A); wi(B)f r2(B); wa(B) |
>

11(A); wa(A); r1(B); wi(B); l’.2.(.A); wa(A); r2(B); wa(B) |

CSE 444 - Spring 2019 34

Testing for Conflict-Serializability

Precedence graph:
« A node for each transaction T;,

* An edge from T; to Tj whenever an action in T;
conflicts with, and comes before an action in T;

» No edge for actions in the same transaction
* The schedule is serializable iff the precedence

graph is acyclic

CSE 444 - Spring 2019 35

Testing for Conflict-Serializability

Important:

Always draw the full graph, unless ONLY asked if
(yes or no) the schedule is conflict serializable

CSE 444 - Spring 2019 36

Example 1

Example 1

— Tl

r2(A)] r1(B)] wa(A); r3(A); w1(B); wa(A); ra(B); wa(B)

) ®

CSE 444 - Spring 2019 37

ro(A)] r1(B)] wo(A); r3(A); w4(B); wa(A); ra(B); wa(B)

@ @ ®

CSE 444 - Spring 2019 38

Example 1

Example 1

No edge because

no conflict (A!=B)

ra(A)] r1(B)I wo(A); r3(A); wq(B); wa(A); ra(B); wo(B)

@ @ ®

CSE 444 - Spring 2019 39

ra(A)j r1(B)] wo(A); r3(A); wi(B); wa(A); ra(B); wa(B)

Example 1

@ @) ®
Example 1
No edge because
same txn (2)

ra(A)] r1(B);|wo(A); r3(A); wq(B); wa(A); ra(B); wo(B)

@ @ ®

CSE 444 - Spring 2019 41

ra(A)] r1(B);|wa(A); r3(A); wi(B); wa(A); ra(B); wa(B)

@ @ ®

CSE 444 - Spring 2019 42

Example 1

rA) || rA) | 2

Example 1

wi(B)] 2

ro(A)j r1(B); wo(A);|ra(A)] wy(B); wa(A); ra(B); wo(B)

) ®

CSE 444 - Spring 2019 43

ro(A)] r1(B); Wa(A); r3(A);|w4(B); wa(A); ra(B); wa(B)

@ @ ®

Example 1

rA) || waA) | 2

CSE 444 - Spring 2019 44
Example 1
w3(A) Edge! Conflict from
T2to T3

ra(A)] r1(B); wo(A); r3(A); wq(B); wa(A); ra(B); wo(B)

@ @ ®

ra(A)i r1(B); wo(A); r3(A); wi(B); wa(A); ra(B); wa(B)

@ @ ®

CSE 444 - Spring 2019 46

CSE 444 - Spring 2019 45
Example 1
Edge! Conflict from
T2to T3

Example 1

roA) || ro(B) | 2

ra(A)] r1(B); wo(A); r3(A); wq(B); wa(A); ra(B); wo(B)

®» 2t

CSE 444 - Spring 2019 47

r2(A)] r1(B); Wa(A); r3(A); wi(B); wa(A); ra(B)f wo(B)

\And so on until compared every pair of actions... \
) (ZJ 1))

CSE 444 - Spring 2019 48

Example 1

A

ro(A); r1(B); wa(A); r3(A); wq(B); wa(A); ra(B); wy(B)

Example 1

v

B
(D 223
More edges, but repeats of the same directed edge
not necessary

CSE 444 - Spring 2019 49

rao(A); r1(B); Wa(A); r3(A); wy(B); wa(A); ra(B); wa(B)

v

23

‘This schedule is conflict-serializable

CSE 444 - Spring 2019 50

Example 2

ro(A); 11(B); Wa(A); ra(B); r3(A); wy(B); wa(A); wy(B)

Example 2

@ @ ®

CSE 444 - Spring 2019 51

ro(A); 11(B); Wo(A); ra(B); r3(A); wq(B); wa(A); wy(B)

\;4/

B
g2

CSE 444 - Spring 2019 52

Example 2

ro(A); 11(B); Wa(A); ra(B); r3(A); wy(B); wa(A); wy(B)

~ N
B
ag—2-®

‘This schedule is NOT conflict-serializable

CSE 444 - Spring 2019 53

View Equivalence

« A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

W1 (X); wa(X); wa(Y); w(Y); wa(Y); |

\ Is this schedule conflict-serializable ? \

(CSE 444 - Spring 2019 54

View Equivalence

« A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

| W4(X); Wa(X); wa(Y); wq(Y); ws(Y); |

Is this schedule conflict-serializable ? |

CSE 444 - Spring 2019 55

View Equivalence

« A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

(w4(X); Wo(X); Wa(Y); W1(Y): Wa(Y); |

D
Lost write

| Wa(X); wa(Y); wa(X); wa(Y); wa(Y); |

‘ Equivalent, but not conflict-equivalent ‘ 5

View Equivalence

™m T2 T3 T T2 T3
W1(X) W1(X)

W2(X) WA1(Y)

W2(Y) co1

Cco2 :> W2(X)
WA1(Y) W2(Y)
CO1 co2

W3(Y) W3(Y)
CO3 co3

‘ Serializable, but not conflict serializable |s

View Equivalence
Two schedules S, S’ are view equivalent if:

* If T reads an initial value of Aiin S,
then T reads the initial value of Ain S’

» If T reads a value of A written by T"in S,
then T reads a value of A written by T in S’

e |If T writes the final value of Ain S,
then T writes the final value of Ain S’

(CSE 444 - Spring 2019 58

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:

« |f a schedule is conflict serializable,
then it is also view serializable

* But not vice versa

CSE 444 - Spring 2019 59

Schedules with Aborted Transactions

* When a transaction aborts, the recovery
manager undoes its updates

» But some of its updates may have affected
other transactions !

(CSE 444 - Spring 2019 60

10

Schedules with Aborted Transactions

T T2
R(A)
W(A)
R(A) —
W < Whats wrong? >
R(B)
W(B)
Commit

Abort

CSE 444 - Spring 2019 61

Schedules with Aborted Transactions

T1 T2
R(A)
W(A)
R(A) e
W(a) C Whatswiong? >
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

Recoverable Schedules

A schedule is recoverable if:

« |tis conflict-serializable, and

* Whenever a transaction T commits, all
transactions that have written elements read
by T have already committed

CSE 444 - Spring 2019 63

Recoverable Schedules

A schedule is recoverable if:

« |tis conflict-serializable, and

*« Whenever a transaction T commits, all
transactions that have written elements read
by T have already committed

(CSE 444 - Spring 2019 64

Recoverable Schedules

T T2 T T2

R(A) R(A)

W(A) W(A)
R(A) R(A)
W(A) W(A)
R(B) R(B)
W(B) W(B)
Commit Commit

? Commit

Nonrecoverable

Recoverable .

CSE 444 - Spring 2019

Recoverable Schedules

™ T2 T3 T4
R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)
R(C)
W(C)
R(C)
W(C)
R(D)
W(D)

Abort

How do we recover ?

11

Cascading Aborts Avoiding Cascading Aborts

« [f a transaction T aborts, then we need to

abort any other transaction T’ that has read % H
an element written by T W(A) W(A)
R(A) Commit
) . , W(A) R(A)

+ A schedule avoids cascading aborts if R(B) W(A)
whenever a transaction reads an element, the W(B) R(B)
transaction that has last written it has already - W(B)
committed. e e

‘We base our |ocking scheme on this rule! With Cascading aborts ‘ Without Cascading aborts

CSE 444 - Spring 2019 67 CSE 444 - Spring 2019 68

Review of Schedules

Scheduler
Serializability Recoverability
* The scheduler:

. * Module that schedules the transaction’s actions,
 Serial . -

o ensuring serializability
 Serializable * Recoverable
+ Conflict serializable » Avoids cascading « Two main apbroaches
« View serializable deletes PP

* Pessimistic: locks
+ Optimistic: timestamps, multi-version, validation

CSE 444 - Spring 2019 69 (CSE 444 - Spring 2019 70

