CSE 444: Database Internals

Lecture 9 Query Plan Cost Estimation

CSE 444 - Spring 2019

Announcements

- · Lab 2 Part 1 due Thursday at 11pm
- 544M Reading due Friday
 - "The Anatomy of a Database System"
 - Recommended for all students to skim

CSE 444 - Spring 2019

A Note About Skew

- Previously shown 2 pass join algorithms do not work for heavily skewed data
- For a sort-merge join, the maximum number of tuples with a particular join attribute should be the number of tuples per page:
 - This often isn't the case: would need multiple passes

CSE 444 - Spring 2019

Back to Query Optimization

CSE 444 - Spring 2019

Query Optimization Summary

Goal: find a physical plan that has minimal cost

What is the cost of a plan?

For each operator, cost is function of CPU, IO, network bw Total_Cost = CPUCost + w_{IO} IOCost+ w_{BW} BWCost

Cost of plan is total for all operators In this class, we look only at IO

CSE 444 - Spring 2019

Query Optimization Summary

Goal: find a physical plan that has minimal cost

CSE 444 - Spring 2019

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

CSE 444 - Spring 2019

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

CSE 444 - Spring 2019

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

- Eg. Cost(\lor ⋈ T) = 3B(\lor) + 3B(T)
- -B(V) = T(V) / PageSize
- $-T(V) = T(\sigma(R) \bowtie S)$

CSE 444 - Spring 2019

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

- Eg. Cost(\lor ⋈ T) = 3B(\lor) + 3B(T)
- -B(V) = T(V) / PageSize
- $-T(V) = T(\sigma(R) \bowtie S)$

Cardinality estimation problem: e.g. estimate $T(\sigma(R) \bowtie S)$

CSE 444 - Spring 2019

Database Statistics

- · Collect statistical summaries of stored data
- Estimate <u>size</u> (=cardinality) in a bottom-up fashion
 - This is the most difficult part, and still inadequate in today's query optimizers
- Estimate cost by using the estimated size
 - Hand-written formulas, similar to those we used for computing the cost of each physical operator

CSE 444 - Spring 2019

Database Statistics

- Number of tuples (cardinality) T(R)
- Indexes, number of keys in the index V(R,a)
- Number of physical pages B(R)
- · Statistical information on attributes
 - Min value, Max value, V(R,a)
- · Histograms
- · Collection approach: periodic, using sampling

CSE 444 - Spring 2019

Spring 2019 15

Size Estimation Problem

Given T(R1), T(R2), ..., T(Rn) Estimate T(Q)

How can we do this? Note: doesn't have to be exact.

CSE 444 - Spring 2019

Size Estimation Problem

```
Q = SELECT list
FROM R1, ..., Rn
WHERE cond<sub>1</sub> AND cond<sub>2</sub> AND . . . AND cond<sub>k</sub>
```

Remark: $T(Q) \le T(R1) \times T(R2) \times ... \times T(Rn)$

CSE 444 - Spring 2019

17

Size Estimation Problem

Remark: $T(Q) \le T(R1) \times T(R2) \times ... \times T(Rn)$

Key idea: each condition reduces the size of T(Q) by some factor, called selectivity factor

CSE 444 - Spring 2019

Selectivity Factor

- Each condition cond reduces the size by some factor called selectivity factor
- Assuming independence, multiply the selectivity factors

CSE 444 - Spring 2019

Example

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3Selectivity of S.C = T.C is 1/10Selectivity of R.A < 40 is $\frac{1}{2}$

Q: What is the estimated size of the query output T(Q)?

CSE 444 - Spring 2019

Example

 $\begin{array}{c} R(A,B) \\ S(B,C) \\ T(C,D) \end{array} \begin{array}{c} Q = SELECT \,^* \\ FROM \ R, \ S, \ T \\ WHERE \ R.B=S.B \ and \ S.C=T.C \ and \ R.A<40 \end{array}$

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3Selectivity of S.C = T.C is 1/10Selectivity of R.A < 40 is $\frac{1}{2}$

 \mathbb{Q} : What is the estimated size of the query output $\mathsf{T}(\mathbb{Q})$?

A: $T(Q) = 30k * 200k * 10k * 1/3 * 1/10 * \frac{1}{2} = 10^{12}$

Selectivity Factors for Conditions

• A = c /*
$$\sigma_{A=c}(R)$$
 */
- Selectivity = 1/V(R,A)

CSE 444 - Spring 2019

22

Selectivity Factors for Conditions

- A = c /* $\sigma_{A=c}(R)$ */
 Selectivity = 1/V(R,A)
- $\begin{array}{ll} \bullet & A < c & /^* \ \sigma_{A < c}(R)^* / \\ & \ \text{Selectivity} = (c \text{Low}(R,A)) / (\text{High}(R,A) \text{Low}(R,A)) \end{array}$

CSE 444 - Spring 2019

Selectivity Factors for Conditions

- A = c /* $\sigma_{A=c}(R)$ */
 Selectivity = 1/V(R,A)
- $\begin{array}{ll} \bullet & A < c & /^* \ \sigma_{A \le c}(R)^* / \\ & \ \text{Selectivity} = (c \text{Low}(R,A)) / (\text{High}(R,A) \text{Low}(R,A)) \end{array}$
- A = B /* R ⋈_{A=B} S */
 - Selectivity = 1 / max(V(R,A),V(S,A))(will explain next)

CSE 444 - Spring 2019

Assumptions

- <u>Containment of values:</u> if V(R,A) <= V(S,B), then all values R.A occur in S.B
 - Note: this indeed holds when A is a foreign key in R, and B is a key in S
- <u>Preservation of values:</u> for any other attribute C, V(R ⋈_{A=B} S, C) = V(R, C) (or V(S, C))
 - Note: we don't need this to estimate the size of the join, but we need it in estimating the next operator

CSE 444 - Spring 2019

SELECT sname

FROM Supplier x, Supply y

and x.scity = 'Seattle'

and x.sstate = 'WA'

WHERE x.sno = y.sno and y.pno = 2

Selectivity of $R\bowtie_{A=B} S$

Assume $V(R,A) \le V(S,B)$

- A tuple t in R joins with T(S)/V(S,B) tuple(s) in S
- Hence T(R ⋈_{A=B} S) = T(R) T(S) / V(S,B)

 $T(R \bowtie_{A=B} S) = T(R) T(S) / max(V(R,A),V(S,B))$

CSE 444 - Spring 2019

Complete Example

Supplier(<u>sno</u>, sname, scity, sstate) Supply(<u>sno</u>, <u>pno</u>, quantity)

• Some statistics Supplier.sno

- T(Supplier) = 1000 records

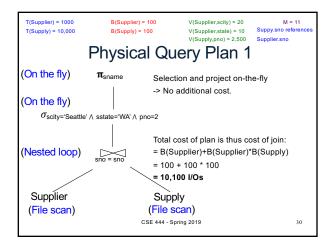
T(Supply) = 10,000 recordsB(Supplier) = 100 pages

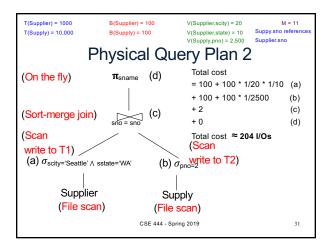
- B(Supply) = 100 pages

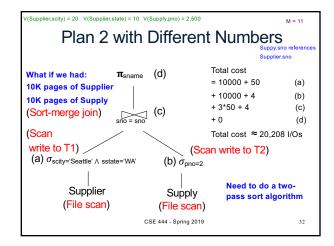
- V(Supplier,scity) = 20, V(Suppliers,state) = 10
- V(Supply,pno) = 2,500
- Both relations are clustered
- M = 11

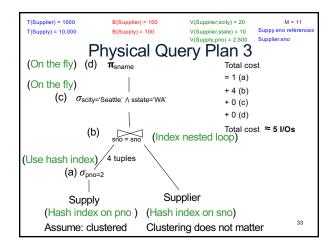
CSE 444 - Spring 2019

28


4


Computing the Cost of a Plan


- Estimate cardinality in a bottom-up fashion
 - Cardinality is the size of a relation (nb of tuples)
 - Compute size of all intermediate relations in plan
- · Estimate cost by using the estimated cardinalities


CSE 444 - Spring 2019

29

Histograms

- · Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

CSE 444 - Spring 2019 34

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{\text{age=48}}(\text{Empolyee}) = ? \quad \sigma_{\text{age>28 and age<35}}(\text{Empolyee}) = ?$

CSE 444 - Spring 2019

35

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{\text{age}=48}(\text{Empolyee}) = ? \quad \sigma_{\text{age}>28 \text{ and age} <35}(\text{Empolyee}) = ?$

CSE 444 - Spring 2019

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{\text{age}=48}(\text{Empolyee}) = ? \quad \sigma_{\text{age}>28 \text{ and age}<35}(\text{Empolyee}) = ?$

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

CSE 444 - Spring 2019

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50 min(age) = 19, max(age) = 68

 $\sigma_{\text{age}=48}(\text{Empolyee}) = ? \quad \sigma_{\text{age}>28 \text{ and age}<35}(\text{Empolyee}) = ?$

Age:	020	2029	30-39	40-49	50-59	> 60	
Tuples	200	800	5000	12000	6500	500	
Estimate = 1200							

Types of Histograms

 How should we determine the bucket boundaries in a histogram?

CSE 444 - Spring 2019

Types of Histograms

- How should we determine the bucket boundaries in a histogram?
- Eq-Width
- · Eq-Depth
- Compressed
- · V-Optimal histograms

CSE 444 - Spring 2019

Employee(ssn, name, age) Histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	033	3338	38-43	43-45	45-54	> 54
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: (48,1900)

CSE 444 - Spring 2019

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use V-optimal histograms or some variations

CSE 444 - Spring 2019

4

Difficult Questions on Histograms

- · Small number of buckets
 - Hundreds, or thousands, but not more
 - WHY ?
- Not updated during database update, but recomputed periodically
 - WHY?
- · Multidimensional histograms rarely used
 - WHY?

CSE 444 - Spring 2019

43

Difficult Questions on Histograms

- · Small number of buckets
 - Hundreds, or thousands, but not more
 - WHY? All histograms are kept in main memory during query optimization; plus need fast access
- Not updated during database update, but recomputed periodically
 - WHY? Histogram update creates a write conflict; would dramatically slow down transaction throughput
- · Multidimensional histograms rarely used
 - WHY? Too many possible multidimensional histograms, unclear which ones to choose

44