CSE 444: Database Internals

Lecture 8 Operator Algorithms (part 2)
for each page of tuples r in R do
for each page of tuples r in R do
for each page of tuples s in S do
for all pairs of tuples t_{1} in r, t_{2} in s
if t_{1} and t_{2} join then output (t_{1}, t_{2})
What is the Cost?
- Cost: $B(R)+B(R) B(S)$
What is the Cost?

Page-at-a-time Refinement

Block-Nested-Loop Refinement
for each group of $M-1$ pages r in R do for each page of tuples s in S do
for each page of tuples s in S do
for all pairs of tuples t_{1} in r, t_{2} in s
if t_{1} and t_{2} join then output $\left(t_{1}, t_{2}\right)$

What is the Cost?

Block Memory Refinement

Block Memory Refinement

Block Memory Refinement

Block-Nested-Loop Refinement
for each group of M-1 pages r in R do for each page of tuples s in S do
for all pairs of tuples t_{1} in r, t_{2} in s if t_{1} and t_{2} join then output $\left(t_{1}, t_{2}\right)$

- Cost: $B(R)+B(R) B(S) /(M-1) \quad$ What is the Cost?

Sort-Merge Join

Sort-merge join: $R \bowtie S$

- Scan R and sort in main memory
- Scan S and sort in main memory
- Merge R and S
- Cost: $B(R)+B(S)$
- One pass algorithm when $B(S)+B(R)<=M$
- Typically, this is NOT a one pass algorithm

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Sort-Merge Join Example
Step 1: Scan Patient and sort in memory
Memory $M=21$ pages
1/2 344 5/6|89

Patient Insurance

1	2

1	4

2466

4	3	1	3

2	8
	8

20

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Outline

- Join operator algorithms
- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=\#$ of distinct values of attribute a

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=\#$ of distinct values of attribute a

What is the cost in each case?

- Clustered index on $a: \quad B(R) / V(R, a)$
- Unclustered index on a:

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=\#$ of distinct values of attribute a

What is the cost in each case?

- Clustered index on a: $\quad B(R) / V(R, a)$
- Unclustered index on $a: \quad T(R) / V(R, a)$

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=\#$ of distinct values of attribute a

What is the cost in each case?

- Clustered index on a: $\quad B(R) / V(R, a)$
- Unclustered index on a: $T(R) / V(R, a)$

Note: we ignore I/O cost for index pages

Index Based Selection

- Example: $\begin{aligned} & B(R)=2000 \\ & T(R)=100,000 \\ & V(R, a)=20\end{aligned}$
cost of $\sigma_{a=v}(R)=$?
$V(R, a)=20$
- Table scan: $B(R)=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:

Index Based Selection

- Example: | $B(R)=2000$ |
| :--- |
| $T(R)=100,000$ |
| $V(R, ~ a)=20$ | cost of $\sigma_{a-v}(\mathrm{R})=$?
- Table scan: $B(R)=2,000$ I/Os
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 \mathrm{I} / \mathrm{Os}$
- If index is unclustered:

Index Based Selection

- Example: $\begin{aligned} & B(R)=2000 \\ & T(R)=100,000 \\ & V(R, a)=20\end{aligned}$
cost of $\sigma_{a-v}(\mathrm{R})=$?
- Table scan:
- Index based selection:

Index Based Selection

- Example:	$B(R)=2000$
$T(R)=100,000$	
$V(R, a)=20$	\quad cost of $\sigma_{a-v}(R)=$?
- Table scan: $B(R)=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered:
- If index is unclustered:

Index Based Selection

- Example: $\begin{aligned} & \mathrm{B}(\mathrm{R})=2000 \\ & \mathrm{~T}(\mathrm{R})=100,000 \\ & \mathrm{~V}(\mathrm{R}, \mathrm{a})=20\end{aligned} \quad$ cost of $\sigma_{\mathrm{a}-\mathrm{v}}(\mathrm{R})=$?
- Table scan: $B(R)=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 \mathrm{I} / \mathrm{Os}$
- If index is unclustered: $T(R) / V(R, a)=5,000 \mathrm{I} / \mathrm{Os}$

Index Based Selection

- Example:	$B(R)=2000$
$T(R)=100,000 \quad$ cost of $\sigma_{a-v}(R)=$?	

$V(R, a)=20$

- Table scan: $B(R)=2,000$ I/Os !
- Index based selection:
- If index is clustered: $B(R) / N(R, a)=100 I / O s$
- If index is unclustered: $T(R) / V(R, a)=5,000 I / O s$!

Index Nested Loop Join

$R \bowtie S$

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Previous nested loop join: cost $-B(R)+T(R) * B(S)$
- Index Nested Loop Join Cost:
- If index on S is clustered: $B(R)+T(R) B(S) / V(S, a)$
- If index on S is unclustered: $B(R)+T(R) T(S) / V(S, a)$

Two-Pass Algorithms

- Fastest algorithm seen so far is one-pass hash join What if data does not fit in memory?
- Need to process it in multiple passes
- Two key techniques
- Sorting
- Hashing

Index Based Selection

- Example: | $\begin{array}{l}B(R)=2000 \\ T(R)=100,000\end{array} \quad$ cost of $\sigma_{a-v}(R)=$? |
| :--- |
| $(R$, |

$V(R, a)=20$

- Table scan: $B(R)=2,000 I / O s$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 I / O s$
- If index is unclustered: $T(R) / N(R, a)=5,000 \mathrm{I} / \mathrm{Os}$

Lesson: Don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small !

Outline

- Join operator algorithms
- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Basic Terminology

- A run in a sequence is an increasing subsequence
- What are the runs?
$2,4,99,103,88,77,3,79,100,2,50$

Basic Terminology

- A run in a sequence is an increasing subsequence
- What are the runs?
$2,4,99,103,|88,|77,|3,79,100| 2,50$,

External Merge-Sort: Step 2

Phase two: merge M runs into a bigger run

- Merge M-1 runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

CSE 444 - Winter 2019
48

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
Output:
0

Example

- Merging three runs to produce a longer run:

0, 14, 33, 88, 92, 192, 322
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
Output:
0 ,?

Example

- Merging three runs to produce a longer run:

0, 14, 33, 88, 92, 192, 322
2, 4, 7, 43, 78, 103, 523
$1,6, \mathbf{9}, \mathbf{1 2}, \mathbf{3 3}, \mathbf{5 2}, \mathbf{8 8}, \mathbf{3 2 0}$
Output:
$0,1,2,4,6,7$, ?

External Merge-Sort: Step 2

Cost of External Merge Sort

Phase two: merge M runs into a bigger run

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

If approx. $\mathrm{B}<=\mathrm{M}^{2}$ then we are done 53

Discussion

- What does $B(R)<=M^{2}$ mean?
- How large can R be?

Discussion

- What does $B(R)<=M^{2}$ mean?
- How large can R be?
- Example:
- Page size $=32 \mathrm{~KB}$
- Memory size 32GB: $\mathrm{M}=10^{6}$ pages
- R can be as large as 10^{12} pages
-32×10^{15} Bytes $=32$ PB
Join $R \bowtie S$
- How?....

Merge-Join

- What does $B(R)<=M^{2}$ mean?
- How large can R be?
- Example:
- Page size = 32KB
- Memory size 32GB: $M=10^{6}$-pages

	Merge-Join Join R \bowtie S - How?....

Merge-Join Example					
Setup: Want to join R and S - Relation R has 10 pages with 2 tuples per page - Relation S has 8 pages with 2 tuples per page Values shown are values of join attribute for each given tuple					
Disk					
R S				Memory M = 5 pages	
4 1	17	3	0		
5 2	119	1	7		
3 4		4	3		
8 6		2	5		
7 9		9	8		
12 14 			9		
5 11 2		12	11		
2 3					
CSE 444 - Winter 2019					60

Merge-Join Example

Step 1: Do the same with S

Announcements

- Lab 2 / part 1 due on Thursday
- We will not run any tests - So bugs are OK
- Homework 2 due on Friday
- Paper review for master's due on Friday

Partitioned Hash Algorithms

- Partition R it into k buckets:
$R_{1}, R_{2}, R_{3}, \ldots, R_{k}$

Partitioned Hash Algorithms

- Partition R it into k buckets: $R_{1}, R_{2}, R_{3}, \ldots, R_{k}$
- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have $B\left(R_{i}\right)=B(R) / k$, for all i
- Goal: each R_{i} should fit in main memory: $B\left(R_{i}\right) \leq M \quad$ How do we choose k ?

Partitioned Hash Algorithms

- Partition R it into k buckets:
$R_{1}, R_{2}, R_{3}, \ldots, R_{k}$
- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have $B\left(R_{i}\right)=B(R) / k$, for all i

Partitioned Hash Algorithms

- Partition R it into k buckets:
$R_{1}, R_{2}, R_{3}, \ldots, R_{k}$
- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have $B\left(R_{i}\right)=B(R) / k$, for all i
- Goal: each R_{i} should fit in main memory: $B\left(R_{i}\right) \leq M$

Partitioned Hash Algorithms

- We choose $k=M-1$ Each bucket has size approx. $B(R) /(M-1) \approx B(R) / M$

Partitioned Hash Algorithms

- We choose $\mathrm{k}=\mathrm{M}-1$ Each bucket has size approx. $B(R) /(M-1) \approx B(R) / M$

CSE 444 - Winter 2019

Grace-Join

$R \bowtie S$

- Step 1:

Note: grace-join is also called

- Hash S into M-1 buckets partitioned hash-join
- Send all buckets to disk
- Step 2
- Hash R into M-1 buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into $M-1$ (=4 buckets)

Partitioned Hash-Join Example

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

Partitioned Hash-Join Example Step 1: Read relation S one page at a time and hash into the 4 buckets		

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

				Memory $\mathrm{M}=5$ pages	\longrightarrow		
R	S						
1	$1{ }^{1} 7$	3	0	Hash h: value \% 4			
5 2	11.9	1	7	0 4			
3 4		4	3	3 1 1			
8 6		2	5	Input buffer $2 \square$			
7 9		9	8	$3 \square$	3		
12 14 5		11	9				
5 11 2		12	1				
2 3		5	7				
CSE 444 - Winter 2019							88

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk

Partitioned Hash-Join Example

Step 2: Read relation R one page at a time and hash into same 4 buckets

- Cost: 3B(R) + 3B(S)
- Assumption: $\min (\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S}))<=\mathrm{M}^{2}$

Hybrid Hash Join Algorithm

- Partition S into k buckets
t buckets S_{1}, \ldots, S_{t} stay in memory
k-t buckets $\mathrm{S}_{\mathrm{t}+1}, \ldots, \mathrm{~S}_{\mathrm{k}}$ to disk
- Partition R into k buckets
- First t buckets join immediately with S
- Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:
$\left(R_{t+1}, S_{t+1}\right),\left(R_{t+2}, S_{t+2}\right), \ldots,\left(R_{k}, S_{k}\right)$

Hybrid Join Algorithm

- How to choose k and t ?

Hybrid Join Algorithm

- How to choose k and t ?
- Choose k large but s.t. $k<=M$
- Choose k large but s.t.

Hybrid Join Algorithm

- How to choose k and t?

Hybrid Join Algorithm

- How to choose k and t ?
- Choose k large but s.t. One block/bucket in memory
$\mathrm{k}<=\mathrm{M}$
- Choose t / k large but s.t. $\quad t / k * B(S)<=M$

Hybrid Join Algorithm

- How to choose k and t ?
- Choose k large but s.t.
- Choose t/k large but s.t.

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
- Choose t/k large but s.t.
- Together:
$t / k * B(S)+k-t<=M$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
- Choose t/k large but s.t.
k <= M
First t buckets in memory
- Choose t/k large but s.t.
t / k * $B(S)<=M$
- Together:
t / k * $B(S)+k-t<=M$
- Assuming t / k * $\mathrm{B}(\mathrm{S}) \gg \mathrm{k}-\mathrm{t}$: $\mathrm{t} / \mathrm{k}=\mathrm{M} / \mathrm{B}(\mathrm{S})$

Total size of first t buckets
CSE 444 - Winter 2019

Hybrid Join Algorithm

Even better: adjust t dynamically

- Start with $\mathrm{t}=\mathrm{k}$: all buckets are in main memory
- Read blocks from S, insert tuples into buckets
- When out of memory:
- Send one bucket to disk
- $\mathrm{t}:=\mathrm{t}-1$
- Worst case.
- All buckets are sent to disk ($\mathrm{t}=0$)
- Hybrid join becomes grace join

Hybrid Join Algorithm

Cost of Hybrid Join:

- Grace join: 3B(R) + 3B(S)
- Hybrid join:
- Saves $2 \mathrm{I} / \mathrm{Os}$ for t / k fraction of buckets
- Saves 2t/k(B(R) + B(S)) I/Os
- Cost:
$(3-2 \mathrm{t} / \mathrm{k})(\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S}))=(3-2 \mathrm{M} / \mathrm{B}(\mathrm{S})(\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S}))$

Hybrid Join Algorithm

- How to choose k and t ?
- Choose k large but s.t.
- Choose t/k large but s.t.
t / k * $B(S)<=M$
- Together:
t / k * $B(S)+k-t<=M$

Hybrid Join Algorithm

- What is the advantage of the hybrid algorithm?

Summary of External Join Algorithms

- Block Nested Loop: $\mathrm{B}(\mathrm{S})+\mathrm{B}(\mathrm{R})^{*} \mathrm{~B}(\mathrm{~S}) /(\mathrm{M}-1)$
- Index Join: $B(R)+T(R) B(S) / V(S, a)$
(unclustered)
- Partitioned Hash: 3B(R)+3B(S);
$-\min (B(R), B(S))<=M^{2}$
- Merge Join: $3 B(R)+3 B(S)$
$-B(R)+B(S)<=M^{2}$
CSE 444 - Winter 2019

Hybrid Join Algorithm

- What is the advantage of the hybrid algorithm?

It degrades gracefully when S larger than M :

- When $B(S)<=M$
- Main memory hash-join has cost $B(R)+B(S)$
- When $B(S)>M$
- Grace-join has cost $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
- Hybrid join has cost $(3-2 t / k)(B(R)+B(S))$

Summary of Query Execution

- For each logical query plan
- There exist many physical query plans
- Each plan has a different cost
- Cost depends on the data
- Additionally, for each query
- There exist several logical plans
- Next lecture: query optimization
- How to compute the cost of a complete plan?
- How to pick a good query plan for a query?

