
CSE 444: Database Internals

Lecture 7
Query Execution and

Operator Algorithms (part 1)

1
CSE 444 - Spring 2019

What We Have Learned So Far

• Overview of the architecture of a DBMS

• Access methods

– Heap files, sequential files, Indexes (hash or B+ trees)

• Role of buffer manager

• Practiced the concepts in hw1 and lab1

CSE 444 - Spring 2019 3

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.

Red Book. 4ed.] 4

Next Lectures

• How to answer queries efficiently!
– Physical query plans and operator algorithms

• How to automatically find good query plans
– How to compute the cost of a complete plan
– How to pick a good query plan for a query
– i.e., Query optimization

CSE 444 - Spring 2019 5

CSE 444 - Spring 2019

Query Execution Bottom Line

• SQL query transformed into physical plan
– Access path selection for each relation
– Implementation choice for each operator
– Scheduling decisions for operators

• Single-threaded or parallel, pipelined or with materialization, etc.

• Execution of the physical plan is pull-based

• Operators given a limited amount of memory
6

CSE 444 - Spring 2019

Suppliers Supplies

sno = sno

!sscity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

#sname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)

7

next()

next()

next()

next() next()

Pipelined Query Execution

Need to build a
hash-table

Base data in
buffer pool
Base data in
buffer pool

Memory Management

Each operator:

• Pre-allocates heap space for input/output tuples

– Option 1: Array of pointers to base data in buffer pool

– Option 2: New tuples on the heap

• Allocates memory for its internal state

– Either on heap or in buffer pool (depends on system)

DMBS limits how much memory each operator, or

each query can use

CSE 444 - Spring 2019 8

In Flight Tuples (option 1)

CSE 444 - Spring 2019 9

Buffer pool

Disk page with many
tuples & attributes

Operator

Pre-allocated tuple descriptors, which are arrays

of column references

Input tuple (left)

Output tuple

Input tuple (right)

In this example, the right tuple
contains fields that themselves
come from different input tuples
(as a result of an earlier join)

Empty slot

Reference to a tuple and

a column offset on a page

In Flight Tuples (option 1)

10

Buffer pool

Operator

Input tuple (left)

Output tuple

Input tuple (right)

If an operator constructs a tuple
descriptor referencing a tuple
in buffer pool, it must increment
pin count of page.
Then decrement it when descriptor
is cleared.
(more details of pin count eviction policy in book)

In Flight Tuples (option 2)

CSE 444 - Spring 2019 11

Buffer pool

Operator

Input tuple (left)

Output tuple

Input tuple (right)

Heap

Copy columns from

buffer pool or create

new, derived values

More info: See 5
th

year reading:

[Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.

Red Book. 4ed.]

Operator Algorithms
(Quick review from 344 today
& new algorithms next time)

CSE 444 - Spring 2019 12

Operator Algorithms

Design criteria

• Cost: IO, CPU, Network

• Memory utilization

• Load balance (for parallel operators)

CSE 444 - Spring 2019 13

Cost Parameters

• Cost = total number of I/Os
– This is a simplification that ignores CPU, network

• Parameters:
– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

• When a is a key, V(R,a) = T(R)
• When a is not a key, V(R,a) can be anything < T(R)

14CSE 444 - Spring 2019

CSE 444 - Spring 2019

Convention

• Cost = the cost of reading operands from disk

• Cost of writing the final result to disk is not
included; need to count it separately when
applicable

15

CSE 444 - Spring 2019

Outline

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)
– Two-pass algorithms (Sec 15.4 and 15.5)

• Note about readings:
– In class, we discuss only algorithms for joins
– Other operators are easier: read the book

16

Review

New

CSE 444 - Spring 2019

Join Algorithms

• Hash join

• Nested loop join

• Sort-merge join

17

CSE 444 - Spring 2019

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)

• One-pass algorithm when B(R) ≤ M

18

Hash Join Example

19

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
‘GrpH’ 554

Two tuples
per page

Hash Join Example

20

Patient Insurance

1 2

3 4

Patient

2 4

Insurance

4 3

Showing

pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-

enough nb

This is one page

with two tuples

Hash Join Example

21

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2

Hash Join Example

22

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
2 2

Write to disk or
pass to next

operator

Hash Join Example

23

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
4 4

Hash Join Example

24

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3
Output buffer
4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

CSE 444 - Spring 2019

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

25

What is the Cost?

CSE 444 - Spring 2019

Nested Loop Joins
• Tuple-based nested loop R ⋈ S

• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S)
• Multiple-pass since S is read many times

26

What is the Cost?

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

Page-at-a-time Refinement

CSE 444 - Spring 2019 27

for each page of tuples r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

What is the Cost?

CSE 444 - Spring 2019

Page-at-a-time Refinement

• Cost: B(R) + B(R)B(S)

for each page of tuples r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

28

What is the Cost?

1 2

Page-at-a-time Refinement

29

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
2 2

Input buffer for Insurance2 4

Page-at-a-time Refinement

30

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance4 3

1 2

Page-at-a-time Refinement

31

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance
Then repeat for next
page of Patient… until end of Patient

Block-Nested-Loop Refinement

32

for each group of M-1 pages r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

What is the Cost?

Block Memory Refinement

33

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Input buffer for Insurance

Cost:

1 2

M= 3

No output buffer: stream to output

Block Memory Refinement

34

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Input buffer for Insurance2 4

Cost:

1 2

M= 3

No output buffer: stream to output

Block Memory Refinement

35

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Input buffer for Insurance2 4

Cost:

1 2

M= 3

No output buffer: stream to output

Block Memory Refinement

36

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Input buffer for Insurance2 4

1 2

Cost:

1 23 4

M= 3

No output buffer: stream to output

Block Memory Refinement

37

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Input buffer for Insurance4 3

1 2

Cost:

1 23 4

M= 3

No output buffer: stream to output

Block Memory Refinement

38

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Input buffer for Insurance2 8

1 2

Cost:

1 23 4

M= 3

No output buffer: stream to output

Block Memory Refinement

39

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Input buffer for Insurance

1 2

Cost:

1 23 4

M= 3

No output buffer: stream to output

Block Memory Refinement

40

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Input buffer for Insurance2 4

1 2

Cost:

1 23 4

M= 3

No output buffer: stream to output

Block-Nested-Loop Refinement

41

for each group of M-1 pages r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

What is the Cost?

Block-Nested-Loop Refinement

• Cost: B(R) + B(R)B(S)/(M-1)

for each group of M-1 pages r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

42

What is the Cost?

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost: B(R) + B(S)
• One pass algorithm when B(S) + B(R) <= M
• Typically, this is NOT a one pass algorithm

43

Sort-Merge Join Example

44

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 1: Scan Patient and sort in memory

Sort-Merge Join Example

45

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

Sort-Merge Join Example

46

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
1 1

Sort-Merge Join Example

47

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Keep going until end of first relation

CSE 444 - Spring 2019

Outline

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)

– Two-pass algorithms (Sec 15.4 and 15.5)

48

CSE 444 - Spring 2019

Index Based Selection

Selection on equality: sa=v(R)
• B(R)= size of R in blocks
• T(R) = number of tuples in R
• V(R, a) = # of distinct values of attribute a

49

CSE 444 - Spring 2019

Index Based Selection

Selection on equality: sa=v(R)
• B(R)= size of R in blocks
• T(R) = number of tuples in R
• V(R, a) = # of distinct values of attribute a

What is the cost in each case?
• Clustered index on a:
• Unclustered index on a:

50

CSE 444 - Spring 2019

Index Based Selection

Selection on equality: sa=v(R)
• B(R)= size of R in blocks
• T(R) = number of tuples in R
• V(R, a) = # of distinct values of attribute a

What is the cost in each case?
• Unclustered index on a: T(R)/V(R,a)
• Clustered index on a: B(R)/V(R,a)

51

CSE 444 - Spring 2019

Index Based Selection

Selection on equality: sa=v(R)
• B(R)= size of R in blocks
• T(R) = number of tuples in R
• V(R, a) = # of distinct values of attribute a

What is the cost in each case?
• Clustered index on a: B(R)/V(R,a)
• Unclustered index on a: T(R)/V(R,a)

52Note: we ignore I/O cost for index pages

Index Based Selection

• Example:

• Table scan:
• Index based selection:

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

CSE 444 - Spring 2019 53

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

CSE 444 - Spring 2019 54

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os

• Index based selection:

– If index is clustered:

– If index is unclustered:

B(R) = 2000

T(R) = 100,000

V(R, a) = 20

cost of sa=v(R) = ?

CSE 444 - Spring 2019 55

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os

• Index based selection:

– If index is clustered: B(R)/V(R,a) = 100 I/Os

– If index is unclustered:

B(R) = 2000

T(R) = 100,000

V(R, a) = 20

cost of sa=v(R) = ?

CSE 444 - Spring 2019 56

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R)/V(R,a) = 100 I/Os
– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

CSE 444 - Spring 2019 57

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os

• Index based selection:

– If index is clustered: B(R)/V(R,a) = 100 I/Os

– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

B(R) = 2000

T(R) = 100,000

V(R, a) = 20

cost of sa=v(R) = ?

Lesson: Don’t build unclustered indexes when V(R,a) is small !

CSE 444 - Spring 2019 58

CSE 444 - Spring 2019

Index Nested Loop Join

R ⋈S
• Assume S has an index on the join attribute
• Iterate over R, for each tuple fetch

corresponding tuple(s) from S

• Cost:
– If index on S is clustered: B(R) + T(R)B(S)/V(S,a)
– If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

59

