CSE 444: Database Internals

Lecture 7
Query Execution and
Operator Algorithms (part 1)

CSE 444 - Spring 2019

What We Have Learned So Far

Overview of the architecture of a DBMS

Access methods
— Heap files, sequential files, Indexes (hash or B+ trees)

Role of buffer manager

Practiced the concepts in hw1 and lab1

CSE 444 - Spring 2019 3

DBMS Architecture

Admission Control Parser
Connection Mgr Query Rewrite Memory Mar
Optimizer
Disk Space Mgr
Executor
Replication Services
Process Manager | | Query Processor Admin Utilities
Access Methods || Buffer Manager Shared Utilities
Lock Manager Log Manager [Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Storage Manager Red Book. 4ed] .

Next Lectures

* How to answer queries efficiently!
— Physical query plans and operator algorithms

* How to automatically find good query plans
— How to compute the cost of a complete plan
— How to pick a good query plan for a query
— i.e., Query optimization

CSE 444 - Spring 2019

Query Execution Bottom Line

« SQL query transformed into physical plan
— Access path selection for each relation
— Implementation choice for each operator

— Scheduling decisions for operators
» Single-threaded or parallel, pipelined or with materialization, etc.

« Execution of the physical plan is pull-based

* Operators given a limited amount of memory

CSE 444 - Spring 2019 6

Pipelined Query Execution

t
(On the fly) . ext)

next()
(On the ﬂy) Usscity=‘SeattIe’ N\ sstate="WA’ A pno=2

Need to build a
next() hash-table
(Hash join) T~

SNO = SNOo
ext / Nxt
Base data in
Suppliers | puffer pool Supplies
(File scan) (File scan)

CSE 444 - Spring 2019 7

Memory Management

Each operator:

* Pre-allocates heap space for input/output tuples
— Option 1: Array of pointers to base data in buffer pool
— Option 2: New tuples on the heap

* Allocates memory for its internal state
— Either on heap or in buffer pool (depends on system)

DMBS limits how much memory each operator, or
each query can use

CSE 444 - Spring 2019 8

In Flight Tuples (option 1)

Pre-allocated tuple descriptors, which are arrays

Output tuple «—
of column references
[Operator} / Reference to a tuple and
_—— a column offset on a page
—_\\
Input tuple (left) Input tuple (rigN
Empty slot
In this example, the right tuple Butfer poo il \\
contains fields that themselves \ | /
come from different input tuples 7
(as a result of an earlier join) \

Disk page with many ¢

CSE 444 - Spring 2019 i
tuples & attributes

In Flight Tuples (option 1)

Output tuple

[Operator}

e

_\\
Input tuple (left) Input tuple (rigN

If an operator constructs a tuple Buffer poo

descriptor referencing a tuple \ /
:

in buffer pool, it must increment ‘ :
pin count of page.

Then decrement it when descriptor

is cleared.
(more details of pin count eviction policy in book)

In Flight Tuples (option 2)

Output tuple

[Operator] Mém

e

Py

Copy columns from

Input tuple (left) Input tuple (right) buffer pool or create
new, derived values

Buffer pool /

/

More info: See 5" year reading:

[Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.
Red Book. 4ed_] CSE 444 - Spring 2019 11

Operator Algorithms
(Quick review from 344 today
& new algorithms next time)

CSE 444 - Spring 2019

12

Operator Algorithms

Design criteria
* Cost: 10, CPU, Network
* Memory utilization

» Load balance (for parallel operators)

CSE 444 - Spring 2019

13

Cost Parameters

* Cost = total number of I/Os
— This is a simplification that ignores CPU, network

« Parameters:
— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a
« When a is a key, V(R,a) = T(R)
 When a is not a key, V(R,a) can be anything < T(R)

CSE 444 - Spring 2019

14

Convention

» Cost = the cost of reading operands from disk

» Cost of writing the final result to disk is not
included; need to count it separately when
applicable

CSE 444 - Spring 2019 15

Outline

» Join operator algorithms
Review | — One-pass algorithms (Sec. 15.2 and 15.3)
{ — Index-based algorithms (Sec 15.6)
New{ — Two-pass algorithms (Sec 15.4 and 15.5)

* Note about readings:
— In class, we discuss only algorithms for joins
— Other operators are easier: read the book

CSE 444 - Spring 2019

16

Join Algorithms
* Hash join
* Nested loop join

« Sort-merge join

CSE 444 - Spring 2019

17

Hash Join
Hash join: R S
* Scan R, build buckets in main memory
 Then scan S and join

. Cost: B(R) + B(S)

* One-pass algorithm when B(R) <M

CSE 444 - Spring 2019

18

Hash Join Example

Patient(pid, name, address)
nsurance(pid, provider, policy nb)

Patient =< Insurance

//7
\

Patient Insurance

1 ‘Bob’ ‘Seattle’ 2 | ‘Blue’ 123
2 ‘Ela’ ‘Everett 4 | ‘Prem’ | 432

Two tuples
per page

3 Jill ‘Kent’ 4 | ‘Prem’ | 343
4 ‘Joe’ ‘Seattle’ ‘GrpH’ | 554 19
//

Hash Join Example — .. .
Patient < Insurance enough nb

Memory M = 21 pages

Showing

/
Insurance
24|66
413|[1]3
2|8 o
This is one page
819 with two tuples 20

Hash Join Example
Step 1: Scan Patient and build hash table in memory

Can be done In
method open()

1 2 P
3 4 R
9 6 MPIE
8 5 MEIE
\

Patient Insurance

— Disk
\ //

Memory M = 21 pages

Hash h: pid % 5

H A

6

6

1

3

>

Input buffer

21

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages

Hash h: pid % 5
calls to next() P

H A

— Disk
\ //

Patient Insurance 1214 2
| 2 | 4 | 6|6 Input buffer utput buffer

41311713

m Write to disk or
319 operator ”

\ //

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages

Hash h: pid % 5
calls to next() P

H A

— Disk
\ //

Patient Insurance 2| 4] M 4
| 2 | 4 | 6|6 Input buffer Output buffer

41311713

9 6 MPIF
89 23

\ //

Done during

Hash Join Example
Step 2: Scan Insurance and probe into hash table

calls to next()

—
\

Disk >

\

2

4

Patient Insurance

Memory M = 21 pages

Hash h: pid % 5

H A R

6

6

[4]3]

1

3

2

8

8

9

1413 M 4

Input buffer Output buffer

Keep going until read all of Insurance

Cost: B(R) + B(S)

24

Nested Loop Joins

* Tuple-based nested loop R @@ S
R s the outer relation, S is the inner relation

for each tuple t, in R do
for each tuple t, in S do
if t; and t, join then output (t;,t,)

What is the Cost?

CSE 444 - Spring 2019 25

Nested Loop Joins

Tuple-based nested loop R ' S
R is the outer relation, S is the inner relation

for each tuple t, in R do
for each tuple t, in S do
if t; and t, join then output (t;,t,)

' ?
Cost: B(R) + T(R) B(S) What is the Cost”

Multiple-pass since S is read many times

CSE 444 - Spring 2019 26

Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples sin S do
for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t;,t,)

What is the Cost?

CSE 444 - Spring 2019 27

Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples sin S do
for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t;,t,)

 Cost: B(R) + B(R)B(S) What is the Cost?

CSE 444 - Spring 2019 28

Page-at-a-time Refinement

Input buffer for Patient

_— Disk T 2 | 4 | Input buffer for Insurance
\ //

Patient Insurance E

|2|4| 6|6 Output buffer
4]3][1]3

9 6 MPIF
89 29

\ //

Page-at-a-time Refinement

— Disk
\ //

Patient Insurance

2[4][6

6

la|3]]1

3

Fll [2]s
BE (s

\ //

Input buffer for Patient

4

3

Input buffer for Insurance

Output buffer

30

Page-at-a-time Refinement

Input buffer for Patient

— Disk T 2 | 8 | Input buffer for Insurance

\ /
Patient Insurance Keep going until read
all of Insurance ﬂ
2/4]/6]6 Then repeat for next Output buffer
413113 page of Patient... until end of Patient
B (2]s
A Cost: B(R) + B(R)B(S) .
\ /

Block-Nested-Loop Refinement

for each group of M-1 pages rin R do
for each page of tuples sin S do
for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t;,t,)

What is the Cost?

32

Block Memory Refinement

Patient Insurance

— Disk
\ //

M= 3

EBA (2]4][6]s
B (2313
9 ¢ MPIF
BE s
\ //

- Input buffer for Patient

Input buffer for Insurance

No output buffer: stream to output

Cost:

33

Block Memory Refinement

Patient Insurance

— Disk
\ //

M= 3

EBA (2]4][6]s
B (2313
9 ¢ MPIF
BE s
\ //

- Input buffer for Patient

4

Input buffer for Insurance

No output buffer: stream to output

Cost:

34

Block Memory Refinement

— Disk
\ //

Patient Insurance

M= 3

EBA| (2]4][6]6
B [2]3][1]3
9 ¢ MPIF
BE s
\ //

- Input buffer for Patient

24

Input buffer for Insurance

No output buffer: stream to output

Cost:

35

Block Memory Refinement

— Disk
\ //

Patient Insurance

M= 3

EBA| (2]4][6]6
B [2]3][1]3
9 ¢ MPIF
BE s
\ //

Input buffer for Patient

24

Input buffer for Insurance

No output buffer: stream to output

Cost:

36

Block Memory Refinement

—
\

Disk

Patient Insurance
1 2

3 4

8 5

HEEE

1

2
3

3
9

/

6

6

3

M= 3

Input buffer for Patient

4

Input buffer for Insurance

No output buffer: stream to output

Cost:

37

Block Memory Refinement

—
\

Disk

/

Patient Insurance
1 2

3 4

8 5

HEEE

2

4

8

9

6|6
113

M= 3

Input buffer for Patient

2 | 8 | Input buffer for Insurance

No output buffer: stream to output

/

Cost:

38

Block Memory Refinement

M= 3

Input buffer for Patient

~— Disk >

\
lent Insurance
Input buffer for Insurance
- 24|66
4131113 No output buffer: stream to output
2|8
3|9 Cost: 2

Block Memory Refinement

Patient Insurance

~— Disk
\ /

24| 6

6

1

3

4
2
3

O | |00 | W

M= 3

Input buffer for Patient

2 | 4 | Input buffer for Insurance

No output buffer: stream to output

\ /

Cost:

40

Block-Nested-Loop Refinement

for each group of M-1 pages rin R do
for each page of tuples sin S do
for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t;,t,)

What is the Cost?

41

Block-Nested-Loop Refinement

for each group of M-1 pages rin R do
for each page of tuples sin S do
for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t;,t,)

» Cost: B(R) + B(R)B(S)/(M-1) What is the Cost?

42

Sort-Merge Join

Sort-merge join: R X S

Scan R and sort in main memory
Scan S and sort in main memory
Merge Rand S

Cost: B(R) + B(S)
One pass algorithm when B(S) + B(R) <=M
Typically, this is NOT a one pass algorithm

43

Sort-Merge Join Example

Step 1: Scan Patient and sort in memory

— Disk
\ //

Patient Insurance

Memory M = 21 pages

EBA (2]4][6]s
B (2313
9 ¢ MPIF
BE s
\ //

12|34]56]89

44

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

—
\

Patient Insurance

Disk >

214||6

6

1

3

43
2|8
8|9

oo wi-
@) AN

12|34]56]89

1

2

2

3

3

4

4

6

6

38

8

9

45

Step 3: Merge Patient and Insurance
Memory M = 21 pages

Sort-Merge Join Example

—
\

Disk >

Patient Insurance

oo wi-
@) AN

2

4

6

6

1

3

4
2
3

3
3
9

12|34]56]89

1

2

2

3

3

4

416

6

38

8

9

_ KN

Output buffer

46

Step 3: Merge Patient and Insurance
Memory M = 21 pages

Sort-Merge Join Example

—
\

Disk >

Patient Insurance

oo wi-
@) AN

2

4

6

6

1

3

4
2
3

3
3
9

12|34]56]89

11211213113 (4|/4|6
68| 8|9
22
Output buffer

Keep going until end of first relation

47

Outline

» Join operator algorithms
— One-pass algorithms (Sec. 15.2 and 15.3)
— Index-based algorithms (Sec 15.6)
— Two-pass algorithms (Sec 15.4 and 15.5)

CSE 444 - Spring 2019

48

Index Based Selection

Selection on equality: .-, (R)

. B(
. T
. \(

R)= size of R in blocks
R) = number of tuples in R

R, a) = # of distinct values of attribute a

CSE 444 - Spring 2019

49

Index Based Selection

Selection on equality: .-, (R)

* B(R)= size of R in blocks

* T(R)=number of tuples in R

* V(R, a) = # of distinct values of attribute a

What is the cost in each case?
 Clustered index on a:
 Unclustered index on a:

CSE 444 - Spring 2019

50

Index Based Selection

Selection on equality: .-, (R)

* B(R)= size of R in blocks

* T(R)=number of tuples in R

* V(R, a) = # of distinct values of attribute a

What is the cost in each case?
* Unclustered indexon a: T(R)/V(R,a)
* Clustered index on a: B(R)/V(R,a)

CSE 444 - Spring 2019 51

Index Based Selection

Selection on equality: .-, (R)

* B(R)= size of R in blocks

* T(R)=number of tuples in R

* V(R, a) = # of distinct values of attribute a

What is the cost in each case”?
* Clustered index on a: B(R)/V(R,a)

* Unclustered indexon a: T(R)/V(R,a)
Note: we ignore I/O cost for index pages

52

Index Based Selection

B(R) = 2000
* Example: | 1(R) = 100,000
V(R, a) = 20

« Table scan:
 Index based selection:

CSE 444 - Spring 2019

cost of 5, (R)=?

53

Index Based Selection

B(R) = 2000

cost of 5, (R)=?

 Example: T(R) = 100,000
V(R, a) = 20

« Table scan: B(R) = 2,000 I/Os
* |ndex based selection:

CSE 444 - Spring 2019

54

Index Based Selection

B(R) = 2000

. Example: T(R) = 100,000 cost of 5, (R)=?

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

 |ndex based selection:
— If index is clustered:
— If index is unclustered:

CSE 444 - Spring 2019

95

Index Based Selection

B(R) = 2000

. Example: T(R) = 100,000 cost of 5, (R)=?

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

* |ndex based selection:
— If index is clustered: B(R)/V(R,a) = 100 I/Os
— If index is unclustered:

CSE 444 - Spring 2019

56

Index Based Selection

B(R) = 2000

. Example: T(R) = 100,000 cost of 5, (R)=?

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

* Index based selection:
— If index is clustered: B(R)/V(R,a) = 100 I/Os
— If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

CSE 444 - Spring 2019

Y

Index Based Selection

B(R) = 2000
* Example: |1(R)= 100,000
V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

* Index based selection:
— If index is clustered: B(R)/V(R,a) = 100 I/Os
— If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

cost of 5, (R)=?

Lesson: Don’t build unclustered indexes when V(R,a) is small !

CSE 444 - Spring 2019 58

Index Nested Loop Join

RS
 Assume S has an index on the join attribute

* |terate over R, for each tuple fetch
corresponding tuple(s) from S

» Cost:
— Ifindex on S is clustered: B(R) + T(R)B(S)/V(S,a)
— Ifindex on S is unclustered: B(R) + T(R)T(S)/V(S,a)

CSE 444 - Spring 2019 59

