CSE 444: Database Internals

Lectures 5-6
Indexing

CSE 444 - Spring 2019

Announcements

* HW1 due Friday
— Turn in a hard copy before/after class or during
office hour.

« Lab1 is due on Wednesday, 11pm

« 544M first reading due Friday... but flexible

CSE 444 - Spring 2019 2

Query Execution
How it all Fits Together

next()
(On the fly) Tsname
next()
(Onthefly) o sscity="Seattle’ A sstate="WA A pno=2
next()
(Nested loop) sotes
next()
next()
Suppliers Supplies
(File scan) (File scan)

CSE 444 - Spring 2019

Query Execution In SimpleDB

open()
next()
SeqScan Operator at
eq bottom of plan
open() ‘ In SimpleDB, SegScan can
ne_xt() find HeapFile in Catalog
Heap File Access Method

But if Heap File reads data
directly from disk, it will not
stay cached in Buffer Pool!

Offers iterator interface
« open()

* next()

« close()

Knows how to read/write pages from disk

CSE 444 - Spring 2019 4

Basic Access Method: Heap File

API

» Create or destroy a file

« Insert a record

» Delete a record with a given rid (rid)
— rid: unique tuple identifier (more later)

» Get a record with a given rid
— Not necessary for sequential scan operator
— But used with indexes

» Scan all records in the file

CSE 444 - Spring 2019

But Often Also Want....

» Scan all records in the file that match a
predicate of the form attribute op value
— Example: Find all students with GPA > 3.5

« Critical to support such requests efficiently

— Why read all data form disk when we only need a
small fraction of that data?

* This lecture and next, we will learn how

CSE 444 - Spring 2019 6

Searching in a Heap File

File is not sorted on any attribute
Student (sid: int, age: int, ..)

1 record
D
_‘9 F 1 page
oo |
=
CSE 444 - Spring 2019 7

Heap File Search Example

« 10,000 students
» 10 student records per page
» Total number of pages: 1,000 pages
» Find student whose sid is 80
— Must read on average 500 pages

» Find all students older than 20
— Must read all 1,000 pages

* Can we do better?

CSE 444 - Spring 2019 8

Sequential File

File sorted on an attribute, usually on primary key
Student (sid: int, age: int, ..)

o

CSE 444 - Spring 2019 9

Sequential File Example

Total number of pages: 1,000 pages

Find student whose sid is 80
— Could do binary search, read logx(1,000) = 10 pages

Find all students older than 20
— Must still read all 1,000 pages
Can we do even better?

Note: Sorted files are inefficient for inserts/deletes

CSE 444 - Spring 2019 10

Creating Indexes in SQL

[CREATE TABLE V(Mint, Nvarchar(20), Pint); |

[CREATE INDEX V1 ON V(N) | oy
where P=55 and M=77

[CREATE INDEX v2 ON V(P, M) |

select *
from Vv
where P=55

CSE 444 - Spring 2019 1

Outline

* Index structures
Today

} Next time

* Hash-based indexes
* B+ trees

CSE 444 - Spring 2019 12

Indexes

« Index: data structure that organizes data records on disk to
optimize selections on the search key fields for the index

« Anindex contains a collection of data entries, and supports
efficient retrieval of all data entries with a given search key value k

* Indexes are also access methods!
— So they provide the same API as we have seen for Heap Files
— And efficiently support scans over tuples matching predicate on search key

0 CHE
Index File " 20 |20
Search key: age o 3 Data File
o EE (sequential file
R sorted on sid)
: 50 22
S ERE
CHE
13
B |19

Indexes

» Search key = can be any set of fields
— not the same as the primary key, nor a key
» Index = collection of data entries
« Data entry for key k can be:
- (k, RID)
— (k, list-of-RIDs)
— The actual record with key k

« In this case, the index is also a special file organization
« Called: “indexed file organization”

CSE 444 - Spring 2019 14

Page Format Approach 2

1/7-7\\

‘ ‘ ‘ ‘Freespace ‘ ‘

]

Header contains slot directory

+ Need to keep track of # of slots

+ Also need to keep track of free space (F) Bach slot contains

Can handle variable-length records
Can move tuples inside a page without changing RIDs
RID is (PagelD, SlotID) combination

CSE 444 - Spring 2019 15

Slot directory

<record offset, record length>

Different Types of Files

» For the data inside base relations:
— Heap file (tuples stored without any order)
— Sequential file (tuples sorted on some attribute(s))
— Indexed file (tuples organized following an index)
* Then we can have additional index files that
store (key,rid) pairs
» Index can also be a “covering index”
— Index contains (search key + other attributes, rid)
— Index suffices to answer some queries

CSE 444 - Spring 2019 16

Primary Index

+ Primary index determines location of indexed records
» Dense index: sequence of (key,rid) pairs
Index File Data File (Sequential file)

1dataentry —[

Jiim

i

1 page

yAvANil]

CSE 444 - Spring 2019 17

Primary Index

» Sparse index

-

|

CSE 444 - Spring 2019 18

Primary Index
with Duplicate Keys

« Sparse index: pointer to lowest search key on
each page: Example search for 20

~

Eaat

N
I
N
®
»

CSE 444 - Spring 2019

...but
need to

search
here too

Primary Index
with Duplicate Keys

« Dense index:

|
ii

CSE 444 - Spring 2019

Primary Index
with Duplicate Keys

» Better: pointer to lowest new search key on
each page:

]: — ..ok to
T 1| Search

from here

* Search for 15?7 35 ?

CSE 444 - Spring 2019 20

Primary Index: Back to Example
» Let’s assume all pages of index fit in memory

* Find student whose sid is 80

— Index (dense or sparse) points directly to the page
— Only need to read 1 page from disk.
» Find all students older than 20

* How can we make both queries fast?

CSE 444 - Spring 2019 2

Secondary Indexes

+ Do not determine placement of records in data files
+ Always dense (why ?)

CSE 444 - Spring 2019 23

Clustered vs.
Unclustered Index

Data entries
Data entries

AEBooon B dOnSerD

Data Records

CLUSTERED UNCLUSTERED
Clustered = records close in index are close in data

CSE 444 - Spring 2019 24

Clustered/Unclustered

« Primary index = clustered by definition
« Secondary indexes = usually unclustered

CSE 444 - Spring 2019 25

Secondary Indexes

» Applications
— Index unsorted files (heap files)
— When necessary to have multiple indexes
— Index files that hold data from two relations
« Called “clustered file”
* Notice the different use of the term “clustered”!

CSE 444 - Spring 2019 26

Index Classification Summary

Primary/secondary
— Primary = determines the location of indexed records
— Secondary = cannot reorder data, does not determine data location

Dense/sparse

— Dense = every key in the data appears in the index
— Sparse = the index contains only some keys

Clustered/unclustered
— Clustered = records close in index are close in data
— Unclustered = records close in index may be far in data

B+ tree / Hash table / ...

CSE 444 - Spring 2019 27

Ex1. Primary Dense Index (tid)
[= Tw o |
- _ 1 record

I L
NN N X R D

F.I_ o []

T R e
[ER T
Dense: an “index key” for every database record
— (In this case) every “database key” appears as an “index
key”
Primary: determines the location of indexed records
Also, Clustered: records close in index are close in data

(]

Al

28

Improve from Primary Clustered Index?

Clustered Index can be made Sparse
(normally one key per page)

CSE 444 - Spring 2019 29

Ex2. Draw a primary sparse index on
ﬂtid!!
[[= Jwe Jowen]
--050300 - 1 record
--
o F 1page

» b3
8 2

CSE 444 - Spring 2019 30

Ex2. Primary Sparse Index (tid)
[+ [~ [o |

- [[[| trecond

- O i
N i et

N E e s |

1 O e
[F [Joor [~

N R N
« Only one index file page instead m.__

/1]

CSE 444 - Spring 2019 31

Large Indexes
* What if index does not fit in memory?

* Would like to index the index itself
— Hash-based index
— Tree-based index

CSE 444 - Spring 2019 32

Hash-Based Index

Good for point queries but not range queries

h2(age) = 00
= CRE])
= ERE h1(sid) = 00
age . =T
w |1
h2(age)=01 | -1 -A sid
ERES
w |
h1(sid) = 11
CRE
®w |1
Secondary

hash-based index
(age, rid) pairs

Primary hash-based index

CSE 444 - Spring 2019 33

Tree-Based Index

* How many index levels do we need?
« Can we create them automatically? Yes!
» Can do something even more powerful!

CSE 444 - Spring 2019 34

B+ Trees

» Search trees

e Ideain B Trees
— Make 1 node = 1 page (= 1 block)

* Ideain B+ Trees

— Keep tree balanced in height — dynamic rather than
static

— Make leaves into a linked list : facilitates range queries

CSE 444 - Spring 2019 35

B+ Trees

Data entries

Data entries
(Index File) L

T

A5 S-S

Data Records

il

Data Records

CLUSTERED UNCLUSTERED

Note: can also store data records directly as data entries

CSE 444 - Spring 2019 36

B+ Trees Basics
» Parameter d = the degree

« Each node has d <= m <= 2d keys (except root)
« Each node also has m+1 pointers

Left pointer of k: -
to keys <k !--E!

Keys k < 30

Right pointer of k:
to keys >=k

Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

+ Each leaf has d <= m <= 2d keys:

SEENENE

CSE 444 - Spring 2019

Data records

B+ Trees Properties

» For each node except the root, maintain 50%
occupancy of keys

* Insert and delete must rebalance to maintain
constraints

CSE 444 - Spring 2019

Searching a B+ Tree

« Exact key values:
— Start at the root
— Proceed down, to the leaf

Select name
From Student
Where age = 25

* Range queries:
— Find lowest bound as above
— Then sequential traversal

Select name

From Student

Where 20 <= age
and age <= 30

CSE 444 - Spring 2019 39

B+ Tree Example

Find the key 40

CSE 444 - Spring 2019 40

B+ Tree Design

* How large d ?
« Example:

— Key size = 4 bytes

— Pointer size = 8 bytes

— Block size = 4096 bytes

2d x4 +(2d+1)x 8 <= 4096
« d=170

CSE 444 - Spring 2019

B+ Trees in Practice

Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133

Typical capacities

— Height 4: 1334 = 312,900,700 records

— Height 3: 1333 = 2,352,637 records
Can often hold top levels in buffer pool

— Level 1= 1page = 8 Kbytes

— Level2= 133 pages= 1 Mbyte

— Level 3 = 17,689 pages = 133 Mbytes

CSE 444 - Spring 2019

Insertion in a B+ Tree

Insert (K, P)
Find leaf where K belongs, insert
If no overflow (2d keys or less), halt
If overflow (2d+1 keys), split node, insert in parent:

parent parent
K3
KI Kz‘m‘m‘m KI K2 ‘ K4 K;‘ ‘ |
=] — =T 11
If leaf, also keep K3 in right node
When root splits, new root has 1 key only
CSE 444 - Spring 2019 43

Insertion in a B+ Tree
Insert K=19

20 ‘ 30 ‘ w‘ 0

1]
FENEE NN

-----{-‘

CSE 444 - Spring 2019 44

r,u‘l»s‘ ‘ xu‘xs‘w‘ |

[[+

_I__
:

Insertion in a B+ Tree

After insertion

(212l T]

|100‘1zo‘140‘ |

|m‘|i‘\x‘w| zn‘m‘m‘sn |m‘ns‘ ‘ ||w‘xs‘an‘
ARENINE S FINNNE FNEEE 2

TN 277

CSE 444 - Spring 2019

Insertion in a B+ Tree
Now insert 25

CSE 444 - Spring 2019 46

Insertion in a B+ Tree

After insertion

(212 T]

I
LIS T Nl L]

o [as] s |10 20 [25] 30 |40] 50 0 ‘ 65 ‘ ‘ | | 0 ‘ 85 ‘

I‘l‘\‘\“l_’l‘l‘\‘\‘\‘ |‘\‘

ololsrblslsislerd

CSE 444 - Spring 2019

47

Insertion in a B+ Tree

But now have to split !

| o [1s |8 | 1 25 30 | 40| 50 | 60 ‘ 65 50]85] 90
|I‘I \‘\\‘ I‘I‘\‘\‘\‘ |‘\‘
CSE 444 - Spring 2019 48

Insertion in a B+ Tree
After the split

10

[>T T T]
|20‘10‘60‘ | |100‘1zn‘|40‘ |
/I/ \ < SRR
19 ERE ” 30 |40 | so |m ‘(50] 85| o0
,\ |\ H—M \ [t \\\

CSE 444 - Spring 2019

Deletion in a B+ Tree

Delete (K, P)
« Find leaf where K belongs, delete
« Check for capacity

« If leaf below capacity, search adjacent nodes (left first,
then right) for extra tuples and rotate them to new leaf

« If adjacent nodes at 50% full, merge

« Update and repeat algorithm on parent nodes if
necessary

CSE 444 - Spring 2019 50

Deletion from a B+ Tree
Delete 30

|h0‘10‘(>0

\
NN

~

| |100‘1zo‘140‘ |
I

(Ll T L

15 19 25 ‘ ||u 4n‘ ‘ "w m‘ ‘ |xu‘)«i‘cﬂ‘

.\ \ [1p] \

l 1
) ﬂmm

CSE 444 - Spring 2019

Deletion from a B+ Tree
After deleting 30

o s s | 20 | 25 |40‘5n 60

m‘ ‘ T ‘m‘ |
.\\ (M1

T
mmmmma (%] \-

CSE 444 - Spring 2019 52

Deletion from a B+ Tree
Now delete 25

EAEIEAEN

AINENENE

|100‘120‘140‘ |

L L]

is s [o 0‘35 |4o‘su |w‘n$

i /“‘I‘\‘ “‘

mhzte 4 \LL{éé

CSE 444 - Spring 2019

Deletion from a B+ Tree
After deleting 25
Need to rebalance
Rotate

\\

w0 s [as | 20 ERIE) 60 | 65 s [85| o0

H’n\\\

ARLSE 4 XL\E{M

CSE 444 - Spring 2019

Deletion from a B+ Tree
Now delete 40

10

[>T T T]
|19‘10‘60‘ | |100‘1zn‘|40‘ |
L\iil |¢4A<5:§\\
0] s | s w‘ 20 ‘ ||w 0 |w s 50] 85| o0
\/H\H/HHH

AW, .L(éé

CSE 444 - Spring 2019

Deletion from a B+ Tree
After deleting 40

Rotation not possible [
Need to merge nodes

19 [30 [60

100 120 140
R) : ’\J\

0] s

s \\9‘20‘ ‘ ‘ ‘ w0 | 65 %

([\
LIT Id] \-.\\\

it Lmléé

CSE 444 - Spring 2019

Deletion from a B+ Tree

Final tree

|100‘1zo‘140‘ |

(o] [5][e]w] =]

I

@\E{% !

CSE 444 - Spring 2019

57

Summary on B+ Trees

» Default index structure on most DBMSs

« Very effective at answering ‘point’ queries:
productName = ‘gizmo’

« Effective for range queries:
50 < price AND price < 100

« Less effective for multirange:
50 < price < 100 AND 2 < quant < 20

CSE 444 - Spring 2019 58

10

