
1

CSE 444: Database Internals

Lecture 4
Data storage and (more) buffer

management

1CSE 444 - Spring 2019

Announcements

• Lab 1 Part 1 due today by 11pm:
– Need to run the ./turnInLab.sh script with the tag lab1-part1

• Homework 1 due Friday
– Hand in during class, or submit via Gradescope by 11pm
– Very helpful for rest of lab 1, don’t wait until Thursday to

start!

• Anyone still without a repo should email me

CSE 444 - Spring 2019 4

Important Note

• Lectures show principles

• You need to think through what you will actually
implement in SimpleDB!
– Try to implement the simplest solutions

• If you are confused, tell us!
– Thursday section this week will be extra lab help

CSE 444 - Spring 2019 5

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.

Red Book. 4ed.] 6

DBMS Architecture

Query Processor

Storage Manager

Access Methods: HeapFile, etc.

Buffer Manager

7

Operators: Sequential Scan, etc.

Data on disk

Disk Space Mgr

Today: Starting at the Bottom

Consider a relation storing tweets:
Tweets(tid, user, time, content)

How should we store it on disk?

CSE 444 - Spring 2019 8

2

Design Exercise

• One design choice: One OS file for each relation
– This does not always have to be the case! (e.g., SQLite uses one file

for whole database)
– DBMSs can also use disk drives directly

• An OS file provides an API of the form
– Seek to some position (or “skip” over B bytes)
– Read/Write B bytes

9

Disk

File
Tuple

Seek
Read… but how much?

First Principle: Work with Pages

• Reading/writing to/from disk
– Seeking takes a long time!
– Reading sequentially is fast

• Solution: Read/write pages of data
– Traditionally, a page corresponds to a disk block

• To simplify buffer manager, want to cache a
collection of same-sized objects

10

Page 0 Page 1 Page 2 Page 3

Continuing our Design
Key questions:
• How do we organize pages into a file?
• How do we organize data within a page?

11

First, how could we store some tuples on a page?
Let’s first assume all tuples are of the same size:

Tweets(tid int, user char(10),
time int, content char(140))

Page Formats

Issues to consider
• 1 page = 1 disk block = fixed size (e.g. 8KB)

• Records:

– Fixed length

– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)

Why do we need RID’s in a relational DBMS ?

See future discussion on indexes and transactions

12

Design Exercise

• Think how you would store tuples on a page
– Fixed length tuples
– Variable length tuples

• Compare your solution with your neighbor’s

13

Page Format Approach 1
Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)
Slot1 Slot2 SlotN

Free space N

Number of records

14

How do we insert a new record?

CSE 444 - Spring 2019

3

Page Format Approach 1
Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

Slot1 Slot2 SlotN SlotN+1

Free Sp. N

Number of records

15

How do we insert a new record?

CSE 444 - Spring 2019

Page Format Approach 1
Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

Slot1 Slot2 SlotN SlotN+1

Free Sp. N

Number of records

16

How do we insert a new record?

How do we delete a record?

CSE 444 - Spring 2019

Page Format Approach 1
Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

Slot1 Slot2 SlotN SlotN+1

Free Sp. N

Number of records

17

How do we insert a new record?

How do we delete a record? What is the problem?

CSE 444 - Spring 2019

Page Format Approach 1
Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

Slot1 Slot2 SlotN SlotN+1

Free Sp. N

Number of records

18

How do we insert a new record?

How do we delete a record? Cannot move records! (Why?)

CSE 444 - Spring 2019How do we handle variable-length records?

Page Format Approach 2

Can handle variable-length records
Can move tuples inside a page without changing RIDs
RID is (PageID, SlotID) combination

Slot directory
Each slot contains

<record offset, record length>

19

Header contains slot directory
+ Need to keep track of # of slots
+ Also need to keep track of free space (F)

Free space 4 F

CSE 444 - Spring 2019 CSE 444 - Spring 2019

Record Formats

Fixed-length records => Each field has a fixed length
(i.e., it has the same length in all the records)

Field 1 Field 2 Field K

Information about field lengths and types is in the catalog

20

4

CSE 444 - Spring 2019

Record Formats

Variable length records

Remark: NULLS require no space at all (why ?)

21

Field 1 Field 2 Field K

Record header

CSE 444 - Spring 2019

LOB

• Large objects
– Binary large object: BLOB
– Character large object: CLOB

• Supported by modern database systems
• E.g. images, sounds, texts, etc.

• Storage: attempt to cluster blocks together

23

Continuing our Design

Our key questions:
• How do we organize pages into a file?
• How do we organize data within a page?

Now, how should we group pages into files?

CSE 444 - Spring 2019 24

Heap File Implementation 1

CSE 444 - Spring 2019 25

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

A sequence of pages (implementation in SimpleDB)

Some pages have space and other pages are full
Add pages at the end when need more space

Works well for small files
But finding free space requires scanning the file…

Heap File Implementation 2

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:
•Data
page

•Data
page

Full pages

Pages with some free space
26

Heap File Implementation 3

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header page

Directory contains free-space count for each page.
Faster inserts for variable-length records

27

5

CSE 444 - Spring 2019

Modifications: Insertion

• File is unsorted (= heap file)
– add it wherever there is space (easy J)
– add more pages if out of space

• File is sorted
– Is there space on the right page ?

• Yes: we are lucky, store it there
– Is there space in a neighboring page ?

• Look 1-2 pages to the left/right, shift records
– If anything else fails, create overflow page

28 CSE 444 - Spring 2019

Overflow Pages

• After a while the file starts being dominated by
overflow pages: time to reorganize

Pagen-1 Pagen Pagen+1

Overflow

29

CSE 444 - Spring 2019

Modifications: Deletions

• Free space by shifting records within page
– Be careful with slots
– RIDs for remaining tuples must NOT change

• May be able to eliminate an overflow page

30 CSE 444 - Spring 2019

Modifications: Updates
• If new record is shorter than previous, easy J
• If it is longer, need to shift records

– May have to create overflow pages

31

Continuing our Design

We know how to store tuples on disk in a heap file

How do these files interact with rest of engine?
• Let’s look back at lecture 3

CSE 444 - Spring 2019 32

How Components Fit Together

Query Processor

Storage Manager

Access Methods: HeapFile, etc.

Buffer Manager

33

Operators: Sequential Scan, etc.

Data on disk

Disk Space Mgr

Operators view
relations as
collections of records

The access methods
worry about how to
organize these
collections

6

Heap File Access Method API

• Create or destroy a file
• Insert a record
• Delete a record with a given rid (rid)

– rid: unique tuple identifier (more later)
• Get a record with a given rid

– Not necessary for sequential scan operator
– But used with indexes (more next lecture)

• Scan all records in the file

CSE 444 - Spring 2019 34

Suppliers Supplies

sno = sno

! sscity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

#sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

35

next()

next()

next()

next() next()

Query Execution
How it all Fits Together

next()

36

Query Execution In SimpleDB

SeqScan Operator at
bottom of plan

Heap File Access Method

In SimpleDB, SeqScan can
find HeapFile in Catalog

open()

open()

Offers iterator interface
• open()
• next()
• close()
Knows how to read/write pages from disk

next()

next()

But if Heap File reads data
directly from disk, it will not
stay cached in Buffer Pool!

CSE 444 - Spring 2019

HeapFile

Buffer
Pool

Manager

37
Data on disk: OS Files

Iterator interface
• open()
• next()
• close()
Read/write pages from disk

Query Execution In SimpleDB

Everyone shares
a single cache

HeapFile2

HeapFile3

HeapFileN

Heap files for
other relations

getPage()

readPage()

Buffer Manager

• Brings pages in from memory and caches them
• Eviction policies

– Random page (ok for SimpleDB)
– Least-recently used
– The “clock” algorithm

• Keeps track of which pages are dirty
– A dirty page has changes not reflected on disk
– Implementation: Each page includes a dirty bit

38CSE 444 - Spring 2019

Buffer Manager

CSE 444 - Spring 2019 39

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk is a collection
of blocks

Buffer pool manager
Access methods

7

Pushing Updates to Disk
• When inserting a tuple, HeapFile inserts it on a page but

does not write the page to disk

• When deleting a tuple, HeapFile deletes tuple from a
page but does not write the page to disk

• The buffer manager worries when to write pages to disk
(and when to read them from disk)

• When need to add new page to file, HeapFile adds page
to file on disk and then reads it through buffer manager

CSE 444 - Spring 2019 40

Alternate Storage Manager
Design: Column Store

41

Rows stored
contiguously on disk

(+ tuple headers)

Columns stored
contiguously on disk
(no headers needed)

Column Store Illustration

42

Row-based
(4 pages)

A 1
A 2
A 2
A 2

Page

C 4
C 4

B 2
B 4

Column-based
(4 pages)

A
A
A

1

A

2

PageC

2

C

4
4
4

B

2

B

2

C-Store also
avoids large
tuple headers

CSE 444 - Spring 2019

Column Store Example

CSE 444 - Spring 2019 43

The Design and Implementation of Modern Column-Oriented
Database Systems Daniel Abadi, Peter Boncz, Stavros
Harizopoulos, Stratos Idreos, Samuel Madden. Foundations and
Trends® in Databases (Vol 5, Issue 3, 2012, pp 197-280)

Conclusion

• Row-store storage managers are most

commonly used today for OLTP systems

• They offer high-performance for transactions

• But column-stores win for analytical workloads

• They are widely used in OLAP

• [Optional] Final discussion: OS vs DBMS

– OS files vs DBMS files

– OS buffer manager vs DBMS buffer manager

CSE 444 - Spring 2019 44

