CSE 444: Database Internals

Lecture 3
DBMS Architecture

CSE 444 - Spring 2018

Announcements

- · Lab 1 part 1 due Monday
- Turn-in script has a bug:
 - -"failed to push some refs ..."
 - Probably due to our repo setup and not your personal copy
 - The script still tags your last commit correctly, we'll figure out the bug and update you

CSE 444 - Spring 2018

What we already know...

- Database = collection of related files
- DBMS = program that manages the database

CSE 444 - Spring 2018

What we already know...

- Data models: relational, semi-structured (XML), graph (RDF), key-value pairs
- Relational model: defines only the logical model, and does not define a physical storage of the data

CSE 444 - Spring 2018

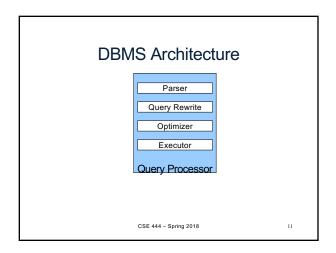
What we already know...

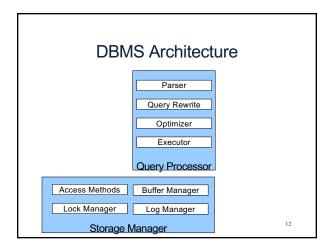
Relational Query Language:

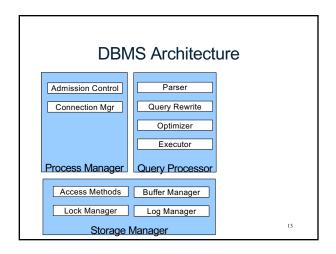
- Set-at-a-time: instead of tuple-at-a-time
- Declarative: user says what they want and not how to get it
- Query optimizer: from what to how

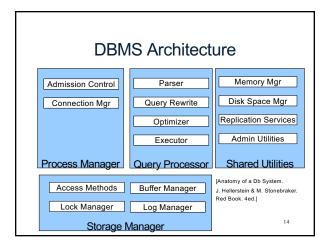
CSE 444 - Spring 2018

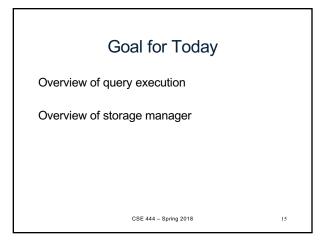
How to Implement a
Relational DBMS?


Key challenge: Achieve
high performance on
large databaseel


SQL
Data


CSE 444 – Spring 2018


9


DBMS Architecture CSE 444 - Spring 2018 10

Query Processor

CSE 444 - Spring 2018

Example Database Schema

Supplier(sno,sname,scity,sstate) Part(pno,pname,psize,pcolor) Supplies (sno,pno,price)

View: Suppliers in Seattle

CREATE VIEW NearbySupp AS SELECT sno, sname FROM Supplier

WHERE scity='Seattle' AND sstate='WA'

Supplier(sno,sname,scity,sstate) Part(pno,pname,psize,pcolor)
Supplies(sno,pno,price)

Example Query

· Find the names of all suppliers in Seattle who supply part number 2

SELECT sname FROM NearbySupp WHERE sno IN (SELECT sno FROM Supplies WHERE pno = 2)

CSE 444 - Spring 2018

Query Processor

- · Step 1: Parser
 - Parses query into an internal format
 - Performs various checks using catalog
- Step 2: Query rewrite
 - View rewriting, flattening, etc.

CSE 444 - Spring 2018

Supplier(sno,sname,scity,sstate) Part(pno,pname,psize,pcolor)
Supplies(sno,pno,price)

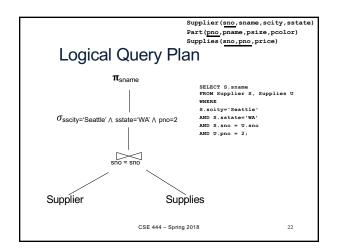
20

Rewritten Version of Our Query

Original query:

SELECT sname FROM NearbySupp WHERE sno IN (SELECT sno FROM Supplies WHERE pno = 2)

Rewritten query (expanding NearbySupp view):


SELECT S.sname FROM Supplier S, Supplies U WHERE S.scity='Seattle' AND S.sstate='WA' AND S.sno = U.sno AND U.pno = 2;

CSE 444 - Spring 2018

Query Processor

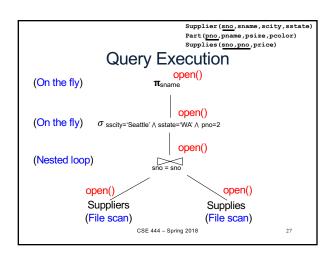
- Step 3: Optimizer
 - Find an efficient query plan for executing the query
 - A query plan is
 - Logical: An extended relational algebra tree
 - Physical: With additional annotations at each node
 - Access method to use for each relation
 - Implementation to use for each relational operator
- · Step 4: Executor
 - Actually executes the physical plan

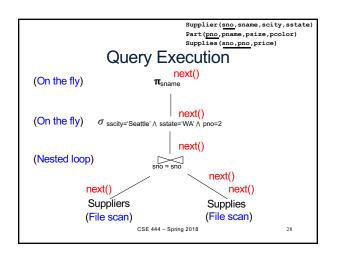
CSE 444 - Spring 2018

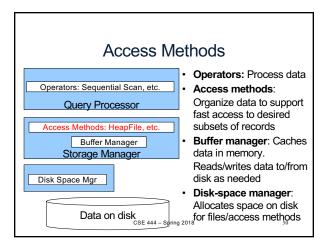
Physical Query Plan

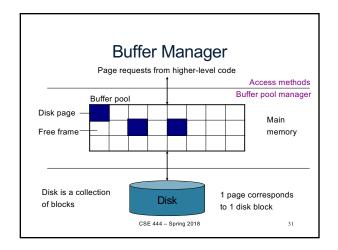
- Logical query plan with extra annotations
- Implementation choice for each operator
- Access path selection for each relation
 - Use a file scan or use an index

CSE 444 - Spring 2018


Spring 2018 23

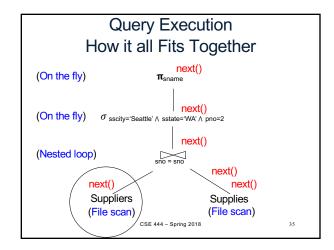


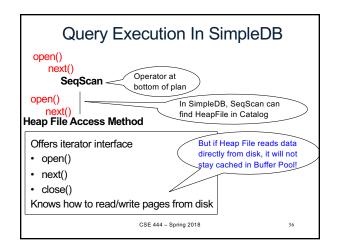

Iterator Interface

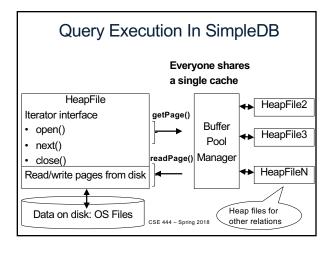

- Each operator implements Oplterator.java
- open()
 - Initializes operator state
 - Sets parameters such as selection predicate
- next()
 - Operator invokes next() recursively on its inputs
 - Performs processing and produces an output tuple
- close(): clean-up state
- Operators also have reference to their **child** operator in the query plan

Buffer Manager

- · Brings pages in from memory and caches them
- · Eviction policies
 - Random page (ok for SimpleDB)
 - Least-recently used
 - The "clock" algorithm (see book)
- · Keeps track of which pages are dirty
 - A dirty page has changes not reflected on disk
 - Implementation: Each page includes a dirty bit


CSE 444 - Spring 2018


32


Access Methods

- · A DBMS stores data on disk by breaking it into pages
 - A page is the size of a disk block.
 - A page is the unit of disk IO
- · Buffer manager caches these pages in memory
- · Access methods do the following:
 - They organize pages into collections called DB files
 - They organize data inside pages
 - They provide an API for operators to access data in these files
- Discussion:
 - OS vs DBMS files
 - OS vs DBMS buffer manager

HeapFile In SimpleDB

- Data is stored on disk in an OS file. HeapFile class knows how to "decode" its content
- · Control flow:
 - SeqScan calls methods such as "iterate" on the HeapFile Access Method
 - During the iteration, the HeapFile object needs to call the BufferManager.getPage() method to ensure that necessary pages get loaded into memory.
 - •The BufferManager will then call HeapFile .readPage()/writePage() page to actually read/write the page.

 CSE 444 Spring 2018