
CSE	444:	Database	Internals

Section	5:	
Transactions



Today

• Serializability and	Conflict	Serializability
– Precedence	graph

• Two-Phase	Locking
– Strict	two	phase	locking

• Timestamp-based	Concurrency	Control

• Multiversion Concurrency	Control



Problem	1:	Serializability	and	
Locking

• Is	this	schedule	conflict	serializable?	

T0 T1

R0(A)

W0(A)

R1(A)

R1(B)

C1

R0(B)

W0(B)

C0

What	is
• Serializability
• Conflict	Serializability?



Review:	(Conflict)	Serializable	
Schedule

• A	schedule	is	serializable if	it	is	equivalent	to	a	serial	schedule

• A	schedule	is	conflict	serializable if	it	can	be	transformed	into	
a	serial	schedule	by	a	series	of	swappings of	adjacent	non-
conflicting	actions

4

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)



Problem	1:	Serializability	and	
Locking

• Is	this	schedule	conflict	serializable?	

T0 T1

R0(A)

W0(A)

R1(A)

R1(B)

C1

R0(B)

W0(B)

C0



• No.

• The	precedence	graph	contains	a	cycle

T0 T1

W0(A),	R1(A)

R1(B), W0(B)



• So,	use	2PL	...
qOriginal	schedule	below

T0 T1

R0(A)

W0(A)

R1(A)

R1(B)

C1

R0(B)

W0(B)

C0



• So,	use	2PL	...
qOriginal	schedule	below

T0 T1

R0(A)

W0(A)

R1(A)

R1(B)

C1

R0(B)

W0(B)

C0

What	is
• Two	Phase	Locking
• Strict	Two	Phase	Locking?



Review:	
(Strict)	Two	Phase	Locking	(2PL)

The	2PL	rule:
In	every	transaction,	all	lock	requests	must	
precede	all	unlock	requests

Strict	2PL:	
All	locks	held	by	a	transaction	are	released	when	
the	transaction	is	completed
– Ensures	that	schedules	are	recoverable

• Transactions	commit	only	after	all	transactions	whose	
changes	they	read	also	commit

– Avoids	cascading	rollbacks
9



• How	can	2PL	can	ensure	a	conflict-serializable	
schedule?
qOriginal	schedule	below

T0 T1

R0(A)

W0(A)

R1(A)

R1(B)

C1

R0(B)

W0(B)

C0



T0 T1
L0(A)
R0(A)
W0(A)

L1(A)	:	Block
L0(B)
R0(B)
W0(B)
U0(A)
U0(B)
C0

L1(A)	:	Granted
R1(A)
L1(B)
R1(B)
U1(A)
U1(B)
C1

Is	this	strict	2PL?

No,	release	locks	after	commit



Problem	2:	Timestamp-based	
Concurrency	Control



Timestamp-based	Concurrency	
Control

• Actions	for	transaction	T
• Grant a	read/write	request	for	a	transaction
• Abort (in	case	T	violates	physical	reality	– late	actions)
• Delay (make	the	Grant	or	Abort	decision	later)

• When	writing,	the	change	is	always	tentative	until	we	
decide	to	commit.	For	this,	we	use	a	commit	bit	C	to	
keep	track	if	the	transaction	that	last	wrote	X	has	
committed



Timestamp-based	Concurrency	
Control	- Four	Rules

• Rule	1:	Read request	on	X	by	T

– TS(T)	<	WT(X),	abort,	(read	too	late)

– TS(T)	>=	WT(X),	physically	realizable
• If	C	=	1,	accept,	update	RT(X)	
• If	C	=	0,	delay T



Timestamp-based	Concurrency	
Control	- Four	Rules

• Rule	2:	Write request	on	X	by	T
– TS(T)	<	RT(X)	(write	too	late)

• Abort

– TS(T)	>=	RT(X),		physically	realizable
• TS(T)	>=	WT(X)

– accept,	update	WT(X),	set	C	=	0	(as	it’s	not	committed	yet)
• TS(T)	<	WT(X)

– If	C	=	1,	ignore	(Thomas	Write	Rule	– ignore	outdated	writes)
– If	C	=	0,	delay



Timestamp-based	Concurrency	
Control	- Four	Rules

• Rule	3:	Commit request	by	T
– Set	C	=	1	for	all	X	written	by	T
– Allow	waiting	transactions	to	proceed

• Rule	4:	Abort T
– Check	if	the	waiting	transactions	can	proceed	
now.



Timestamp-based	
Concurrency	Control	

What	will	happen	at	the	last	request?
• ST1 ->	ST2 ->	R1(A)	->	R2(A)	->	W1(B)	->	W2(B)
• ST1 ->	ST2 ->	R2(A)	->	C2 ->	R1(A)	->	W1(A)



Timestamp-based	
Concurrency	Control	

What	will	happen	at	the	last	request?
• ST1 ->	ST2 ->	R1(A)	->	R2(A)	->	W1(B)	->	W2(B)	

– ACCEPTED	 [no	need	to	check	C(B)]
• ST1 ->	ST2 ->	R2(A)	->	C2 ->	R1(A)	->	W1(A)

– ROLLED	BACK		[R2(A)	precedes]



Problem	2:	Timestamp-based	
Concurrency	Control

• Explain	what	happens	when	a	time-stamp	
based	concurrency	control	is	used.

• TS1 ->	TS2 ->	TS3 ->	TS4 ->	R1(X)	->	R2(X)	->	
W2(X)	->	W1(X)	->	W3(Y	)	->	W2(Y	)	->	C3 ->	
W4(Z)	->	C4 ->	R2(Z)

• Remember!	
– Note	changes	to	RT,	WT,	A	and	C		bit	for	each	
element

– Apply	four	rules



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	->	W1(X)	->	W3(Y	)	->	W2(Y	)	->	C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	

=	0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X)



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	->	W1(X)	->	W3(Y	)	->	W2(Y	)	->	C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	

=	0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1

R2(X)



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	->	W1(X)	->	W3(Y	)	->	W2(Y	)	->	C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	

=	0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1

R2(X)

1.	Physically	realizable:	
TS(T1)	>=	WT(X)

2.	C	=	1:	grant	request

3.	Update	RT	:	TS(T1)	>	RT(X)



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	->W1(X)	->	W3(Y	)	->	W2(Y	)	->	C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	

=	0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1

R2(X) RT=2

W2(X)



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	->W1(X)	->	W3(Y	)	->	W2(Y	)	->	C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	

=	0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1

R2(X) RT=2

W2(X)

1.	Physically	realizable:	
TS(T2)	>=	WT(X)

2.	C	=	1:	grant	request

3.	Update	WT



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	->	W2(Y	)	->	C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	=	

0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1
R2(X) RT=2
W2(X) WT=2,	C=0

W1(X)



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	->	W2(Y	)	->	C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	=	

0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1
R2(X) RT=2
W2(X) WT=2,	C=0

W1(X):	abort



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	->	W2(Y	)	->	C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	=	

0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1
R2(X) RT=2
W2(X) WT=2,	C=0

W1(X):	abort

1.	NOT Physically	realizable:	
TS(T1)	<	RT(X)

Abort/rollback



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	->	W2(Y	)	->	C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	=	

0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1
R2(X) RT=2
W2(X) WT=2,	C=0

W1(X):	abort

W3(Y)



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	=	

0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1
R2(X) RT=2
W2(X) WT=2,	C=0

W1(X):	abort

W3(Y) WT=3,	C=0

W2(Y)

1.	Physically	realizable:	
TS(T3)	>=	RT(X) and	TS(T3)	>=	WT(X)

2.	Update	WT	and	C	(not	committed	yet)



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	=	

0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1
R2(X) RT=2
W2(X) WT=2,	C=0

W1(X):	abort

W3(Y) WT=3,	C=0

W2(Y):	delay



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	=	

0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1
R2(X) RT=2
W2(X) WT=2,	C=0

W1(X):	abort

W3(Y) WT=3,	C=0

W2(Y):	delay

1.	Physically	realizable:	
TS(T3)	>=	RT(X)			although	TS(T2)	<	WT(X)
2.	We	could	not	apply	Thomas’	write	rule	(ignore	W2(Y))	since	C=0



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	=	

0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1
R2(X) RT=2
W2(X) WT=2,	C=0

W1(X):	abort

W3(Y) WT=3,	C=0

W2(Y):	delay

C3



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	=	

0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1
R2(X) RT=2
W2(X) WT=2,	C=0

W1(X):	abort

W3(Y) WT=3,	C=0

W2(Y):	delay

C3 C=1



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->	C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	=	

0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1
R2(X) RT=2
W2(X) WT=2,	C=0

W1(X):	abort

W3(Y) WT=3,	C=0

W2(Y):	delay

C3 C=1

A	later	write	by	T3 has	been	
committed!



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z

1 2 3 4 RT	=	0,	WT	=	
0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	
=	0,	C	=	1

R1(X) RT=1

R2(X) RT=2

W2(X) WT=2,	C=0
W1(X):	abort

W3(Y) WT=3,	C=0

W2(Y):	delay

C3 C=1

Ignore	W2(Y)	
and	proceed



T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	

=	0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	=	
0,	C	=	1

Ignore	W2(Y)	
and	proceed

W4(Z)

ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->C4 ->	
R2(Z)



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	

=	0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	=	
0,	C	=	1

Ignore	W2(Y)	
and	proceed

W4(Z) WT=4,	
C	=	0

1.	Physically	realizable:	
TS(T4)	>=	RT(X) and	TS(T4)	>=	WT(X)

2.	Update	WT	and	C	(not	committed	yet)



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->C4 ->	
R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	

=	0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	=	
0,	C	=	1

Ignore	W2(Y)	
and	proceed

W4(Z) WT=4,	
C	=	0

C4 C=1



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->C4 -
>R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	

=	0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	=	
0,	C	=	1

Ignore	W2(Y)	
and	proceed

W4(Z) WT=4,	C	=	0

C4 C=1

R2(Z)



ST1 ->	ST2 ->	ST3 ->	ST4 ->	R1(X)	->	R2(X)	->	W2(X)	-> W1(X)	->	W3(Y	)	-> W2(Y	)	-> C3 ->	W4(Z)	->C4 -
>R2(Z)

T1 T2 T3 T4 X Y Z
1 2 3 4 RT	=	0,	WT	

=	0,	C	=	1
RT	=	0,	WT	
=	0,	C	=	1

RT	=	0,	WT	=	
0,	C	=	1

Ignore	W2(Y)	
and	proceed

W4(Z) WT=4,	C	=	0

C4 C=1

R2(Z):	abort

1.	NOT Physically	realizable:
TS(T2)	<	WT(Z)

Abort/rollback



Multiversion Concurrency 
Control

• Maintains	old versions	of	database	elements	
in	addition	the	current	version	in	the	
database	itself.

• The	idea	is	to	allow	reads that	would	
otherwise	result	in	an	abort	(as	the	current	
version	was	written	by	future	transaction)



Problem with Timestamp-Based 
Scheduling

Had to abort because 
WT(A) is greater than 

my own timestamp Would have been useful if I 
had access to an old version 

of A (from 150)…



Multiversion Timestamps


