
1

CSE 444: Database Internals

Lectures 20-21
Parallel DBMSs

1CSE 444 - Winter 2018

What We Have Already Learned

• Overall architecture of a DBMS

• Internals of query execution:

– Data storage and indexing

– Buffer management

– Query evaluation including operator algorithms

– Query optimization

• Internals of transaction processing:

– Concurrency control: pessimistic and optimistic

– Transaction recovery: undo, redo, and undo/redo

CSE 444 - Winter 2018 2

Where We Are Headed Next

• Scaling the execution of a query
– Parallel DBMS
– MapReduce
– Spark and Myria

• Scaling transactions
– Distributed transactions
– Replication

• Scaling with NoSQL and NewSQL
CSE 444 - Winter 2018 3

Reading Assignments

• Main textbook Chapter 20.1

• Database management systems.
Ramakrishnan&Gehrke.
Third Ed. Chapter 22.11

CSE 444 - Winter 2018 4

DBMS Deployment: Local

CSE 444 - Winter 2018 5

Data files on disk

DBMS

Application

Desktop

Great for one application

(could be more) and one

user.

CSE 444 - Winter 2018

DBMS Deployment: Client/Server

Data files

connection
(ODBC, JDBC)

6Applications

DB Server

Great for many apps and
many users

2

CSE 444 - Winter 2018

DBMS Deployment: 3 Tiers

Data files
7Browser

DB Server

Great for web-based
applications

Web Server &
App Server

Connection
(e.g., JDBC)

HTTP/SSL

CSE 444 - Winter 2018

DBMS Deployment: Cloud

8
Browser

Great for web-based
applications

Data files DB Server Web Server &
App Server

Connection
(e.g., JDBC)

HTTP/SSL

How to Scale?

9Browser

DB Server

Connection
(e.g., JDBC)

HTTP/SSL
…

http
multiplex

CSE 444 - Winter 2018
Use many Web servers: Easy!

How to Scale?

10
Browser

Many DBMS
instances: HARD

Connection

(e.g., JDBC)

HTTP/SSL
…

http
multiplex

…

CSE 444 - Winter 2018
Web Server Farm

How to Scale?

• We can easily replicate the web servers and
the application servers

• We cannot so easily replicate the database
servers, because the database is unique

• We need to design ways to scale up the DBMS

CSE 444 - Winter 2018 11 CSE 444 - Winter 2018

How to Scale a DBMS?

12

Scale up

Scale out
A more

powerful server

More servers,
one database

3

What to scale?

• OLTP: Transactions per second
– OLTP = Online Transaction Processing

• OLAP: Query response time
– OLAP = Online Analytical Processing

CSE 444 - Winter 2018 13

Scaling Transactions Per Second

• Amazon
• Facebook
• Twitter
• … your favorite Internet application…

• Goal is to scale OLTP workloads

• We will get back to this next week

CSE 444 - Winter 2018 14

Scaling Single Query
Response Time

• Goal is to scale OLAP workloads

• That means the analysis of massive datasets

CSE 444 - Winter 2018 15

This Week: Focus on Scaling a
Single Query

CSE 444 - Winter 2018 16

Big Data

• Buzzword?

• Definition from industry:
– High Volume

– High Variety

– High Velocity

CSE 444 - Winter 2018 17

http://www.gartner.com/newsroom/id/1731916

Big Data

Volume is not an issue
• Databases do parallelize easily; techniques available

from the 80’s
– Data partitioning
– Parallel query processing

• SQL is embarrassingly parallel

• We will learn how to do this

CSE 444 - Winter 2018 18

4

Big Data

New workloads are an issue

• Big volumes, small analytics
– OLAP queries: join + group-by + aggregate
– Can be handled by today’s RDBMSs (e.g., Teradata)

• Big volumes, big analytics
– More complex Machine Learning, e.g. click

prediction, topic modeling, SVM, k-means

– Requires innovation – Active research area
CSE 444 - Winter 2018 19

Data Analytics Companies
Fifteen years ago, explosion of db analytics companies

• Greenplum founded in 2003 acquired by EMC in 2010; A
parallel shared-nothing DBMS (this lecture)

• Vertica founded in 2005 and acquired by HP in 2011; A parallel,
column-store shared-nothing DBMS

• DATAllegro founded in 2003 acquired by Microsoft in 2008; A
parallel, shared-nothing DBMS

• Aster Data Systems founded in 2005 acquired by Teradata in
2011; A parallel, shared-nothing, MapReduce-based data
processing system (in two lectures). SQL on top of MapReduce

• Netezza founded in 2000 and acquired by IBM in 2010. A
parallel, shared-nothing DBMS.

CSE 444 - Winter 2018 20

CSE 444 - Winter 2018 21

Two Fundamental Approaches to
Parallel Data Processing

• Parallel databases, developed starting with the
80s (this lecture)
– For both OLTP (transaction processing)
– And for OLAP (decision support queries)

• MapReduce, first developed by Google,
published in 2004 (in two lectures)
– Only for decision support queries

CSE 444 - Winter 2018 22Today we see convergence of the two approaches

Architectures for Parallel DMBSs

23

From: Greenplum Database Whitepaper

SAN = “Storage Area Network”

CSE 444 - Winter 2018

Our Focus: Shared-Nothing DBMS

CSE 444 - Winter 2018 24

5

Parallel Query Evaluation

• Multiple DBMS instances (= processes) also called
“nodes” execute on machines in a cluster
– One instance plays role of the coordinator
– Other instances play role of workers

• Applications interact with coordinator
• Workers execute queries

– Typically all workers execute the same plan
• Intra-operator parallelism & intra-query parallelism

– Some operations may execute at subsets of workers
– Workers can execute multiple queries at the same time

• Inter-query parallelism
CSE 444 - Winter 2018 25

Parallel Query Execution

CSE 444 - Winter 2018 26

SCAN

SCAN

SHUFFLE
ProducerDISK

DISK

SELECT

S

h

u

f

f

l

e

AGG

SHUFFLE
Producer

SHUFFLE
Consumer

SELECT

Worker 1

Worker 2

SHUFFLE
Consumer AGG

Parallel Query Evaluation
New operator: Shuffle
• Origin: Exchange operator from Volcano system
• Serves to re-shuffle data between processes

– Handles data routing, buffering, and flow control
• Two parts: ShuffleProducer and ShuffleConsumer
• Producer:

– Pulls data from child operator and sends to n consumers
– Producer acts as driver for operators below it in query plan

• Consumer:
– Buffers input data from n producers and makes it available

to operator through getNext() interface

27CSE 444 - Winter 2018

Parallel DBMSs

• Performance metrics
– Speedup: More nodes, same data -> higher speed
– Scaleup: More nodes, more data -> same speed
– Speed = query execution time

• Key challenges
– Start-up costs
– Interference
– Skew

28CSE 444 - Winter 2018

Parallel Query Processing

How do we compute these operations on a shared-

nothing parallel db?

• Selection: σA=123(R)

• Group-by: γA,sum(B)(R)

• Join: R ⋈ S

Before we answer that: how do we store R (and S) on a

shared-nothing parallel db?

29CSE 444 - Winter 2018

Horizontal Data Partitioning

CSE 444 - Winter 2018 30

1 2 P . . .

Data: Servers:

K A B

… …

6

Horizontal Data Partitioning

CSE 444 - Winter 2018 31

K A B

… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Horizontal Data Partitioning

CSE 444 - Winter 2018 32

K A B

… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning

• Relation R split into P chunks R0, …, RP-1, stored at
the P nodes

• Block partitioned
– Each group of k tuples goes to a different node

• Hash based partitioning on attribute A:
– Tuple t to chunk h(t.A) mod P

• Range based partitioning on attribute A:
– Tuple t to chunk i if vi-1 < t.A < vi

• For hash and range partitioning: Beware of skew

33CSE 444 - Winter 2018

Horizontal Data Partitioning

All three choices are just special cases:

• For each tuple, compute bin = f(t)

• Different properties of the function f determine
hash vs. range vs. round robin vs. anything

34CSE 444 - Winter 2018

35

Example: Teradata – Loading

AMP = “Access Module Processor” = unit of parallelism
CSE 444 - Winter 2018

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

• On a conventional database: cost = B(R)

• Q: What is the cost on a parallel database with
P processors ?

– Block partitioned

– Hash partitioned

– Range partitioned

36CSE 444 - Winter 2018

7

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

• On a conventional database: cost = B(R)

• Q: What is the cost on a parallel database with
P processors ? A: B(R) / P, but
– Block partitioned -- all servers do the work
– Hash partitioned -- some servers do the work
– Range partitioned -- some servers do the work

37CSE 444 - Winter 2018

Basic Parallel GroupBy

Data: R(K,A,B,C) -- hash-partitioned on K
Query: γA,sum(B)(R)

38

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

CSE 444 - Winter 2018

Basic Parallel GroupBy

• Step 1: each server i partitions its chunk Ri using
a hash function h(t.A) mod P: Ri,0, Ri,1, …, Ri,P-1

• Step 2: server j computes γA, sum(B) on
R0,j, R1,j, …, RP-1,j

39CSE 444 - Winter 2018

Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is the
new running time?

• If we double both P and the size of R, what is
the new running time?

CSE 444 - Winter 2018 40

Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is the
new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is
the new running time?
– Same (each server holds the same # of chunks)

CSE 444 - Winter 2018 41

Basic Parallel GroupBy

Can we do better?
• Sum?
• Count?
• Avg?
• Max?
• Median?

42CSE 444 - Winter 2018

8

Basic Parallel GroupBy

Can we do better?

• Sum?

• Count?

• Avg?

• Max?

• Median?

YES

• Compute partial aggregates before shuffling

43CSE 444 - Winter 2018

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=

sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+

sum(a7+a8+a9))

avg(B) =

sum(B)/count(B)

median(B)

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, max(b) as topb
FROM R WHERE a > 0
GROUP BY a

Example Query with Group By

44

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σa>0

scan

g a, max(b)→b

hash on a

g a, max(b)→topb

σa>0

scan

g a, max(b)→b

hash on a

g a, max(b)→topb

σa>0

scan

g a, max(b)→b

hash on a

g a, max(b)→topb

45

Parallel Join: R ⋈A=B S

• Data: R(K1,A, C), S(K2, B, D)
• Query: R(K1,A,C) ⋈ S(K2,B,D)

46CSE 444 - Winter 2018

Parallel Join: R ⋈A=B S

• Data: R(K1,A, C), S(K2, B, D)
• Query: R(K1,A,C) ⋈ S(K2,B,D)

47

R’1, S’1 R’2, S’2 R’P, S’P . . .

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally

CSE 444 - Winter 2018

Initially, both R and S are horizontally partitioned on K1 and K2

Parallel Join: R ⋈A=B S

• Step 1
– Every server holding any chunk of R partitions its

chunk using a hash function h(t.A) mod P
– Every server holding any chunk of S partitions its

chunk using a hash function h(t.B) mod P

• Step 2:
– Each server computes the join of its local fragment

of R with its local fragment of S

48CSE 444 - Winter 2018

9

Data: R(K1,A, B), S(K2, B, C)

Query: R(K1,A,B) ⋈ S(K2,B,C)

49

K1 B

1 20

2 50

K2 B

101 50

102 50

K1 B

3 20

4 20

K2 B

201 20

202 50

R1 S1 R2 S2

K1 B

1 20

3 20

4 20

K2 B

201 20

K1 B

2 50

K2 B

101 50

102 50

202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle

⋈ ⋈

Partition

Local
Join

Join on R.B = S.B

CSE 444 - Winter 2018

Optimization for Small Relations

When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across nodes

• Also called a small join or a broadcast join

CSE 444 - Winter 2018 50

Other Interesting Parallel
Join Implementation

Skew:
• Some partitions get more input tuples than others

Reasons:
– Range-partition instead of hash
– Some values are very popular:

• Heavy hitters values; e.g. ‘Justin Bieber’

– Selection before join with different selectivities

• Some partitions generate more output tuples than
others

CSE 444 - Winter 2018 51

Some Skew Handling Techniques
If using range partition:

• Ensure each range gets same number of tuples

• E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

• Eq-depth v.s. eq-width histograms

CSE 444 - Winter 2018 52

Some Skew Handling Techniques
Create more partitions than nodes

• And be smart about scheduling the partitions

• Note: MapReduce uses this technique

CSE 444 - Winter 2018 53

Some Skew Handling Techniques
Use subset-replicate (a.k.a. “skewedJoin”)
• Given R ⋈A=B S
• Given a heavy hitter value R.A = ‘v’

(i.e. ‘v’ occurs very many times in R)
• Partition R tuples with value ‘v’ across all nodes

e.g. block-partition, or hash on other attributes
• Replicate S tuples with value ‘v’ to all nodes
• R = the build relation
• S = the probe relation

CSE 444 - Winter 2018 54

10

55

Example: Teradata – Query Execution

SELECT *

FROM Order o, Line i

WHERE o.item = i.item

AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

CSE 444 - Winter 2018

Order(oid, item, date), Line(item, …)

Query Execution

CSE 444 - Winter 2018 56

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

Query Execution

CSE 444 - Winter 2018 57

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)

Query Execution

CSE 444 - Winter 2018 58

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT *
FROM R, S, T
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Example 2
σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

60CSE 444 - Winter 2018

11

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

61
CSE 444 - Winter 2018

