CSE 444: Database Internals

Lectures 20-21
Parallel DBMSs

What We Have Already Learned

- Overall architecture of a DBMS
- Internals of query execution:
 - Data storage and indexing
 - Buffer management
 - Query evaluation including operator algorithms
 - Query optimization
- Internals of transaction processing:
 - Concurrency control: pessimistic and optimistic
 - Transaction recovery: undo, redo, and undo/redo

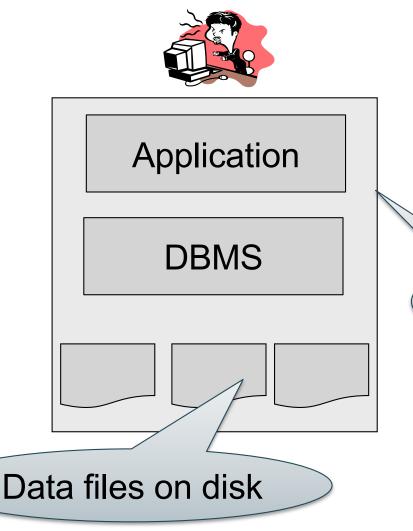
Where We Are Headed Next

- Scaling the execution of a query
 - Parallel DBMS
 - MapReduce
 - Spark and Myria
- Scaling transactions
 - Distributed transactions
 - Replication
- Scaling with NoSQL and NewSQL

Reading Assignments

- Main textbook Chapter 20.1
- Database management systems.
 Ramakrishnan&Gehrke.
 Third Ed. Chapter 22.11

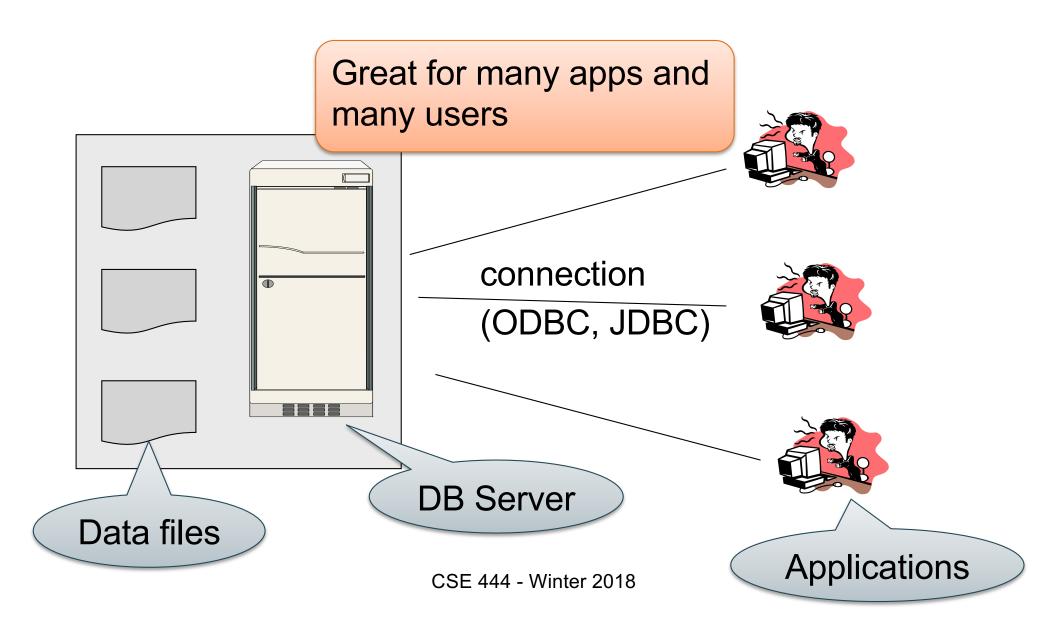
DBMS Deployment: Local



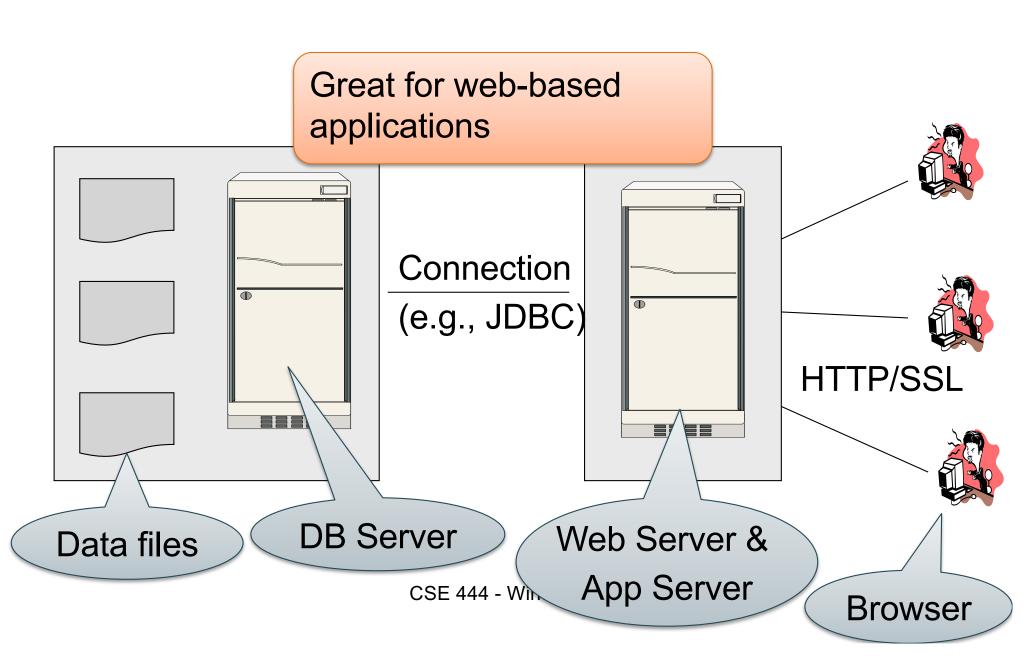
Great for one application (could be more) and one user.

Desktop

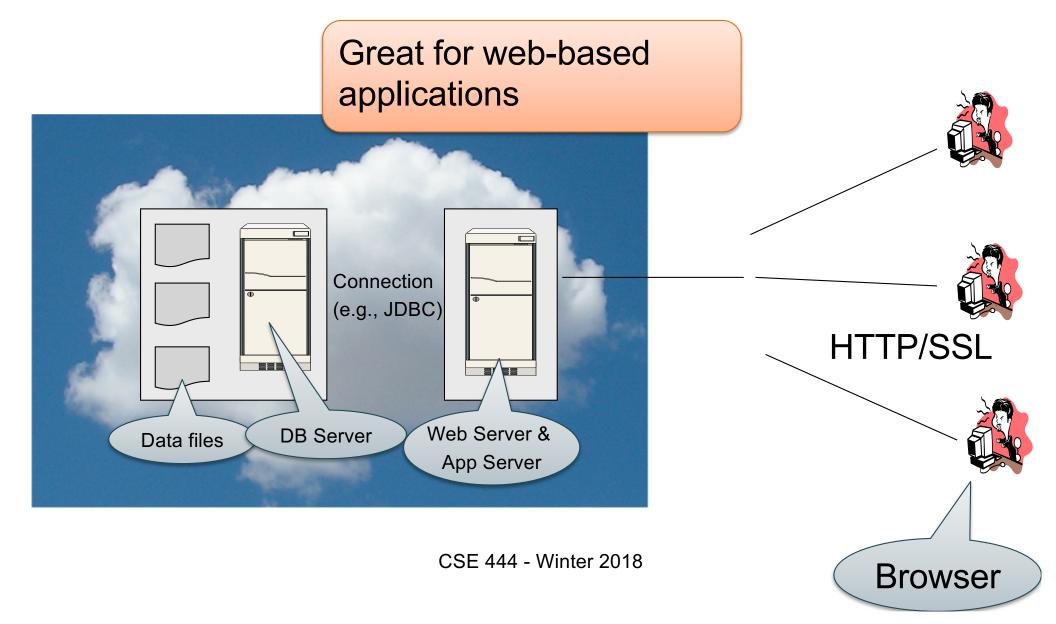
DBMS Deployment: Client/Server



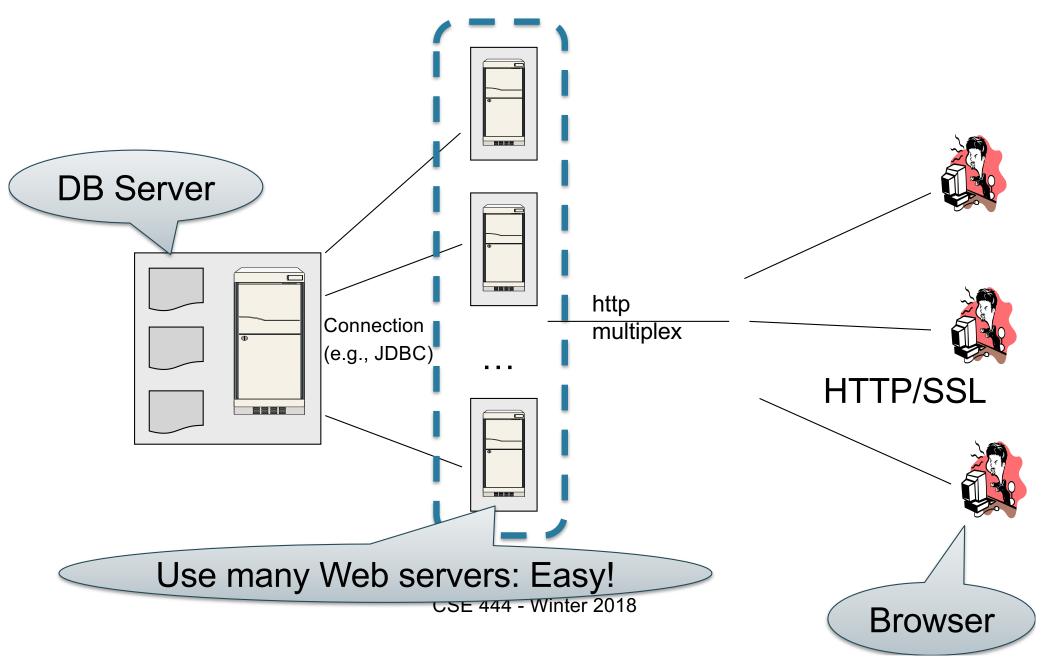
DBMS Deployment: 3 Tiers



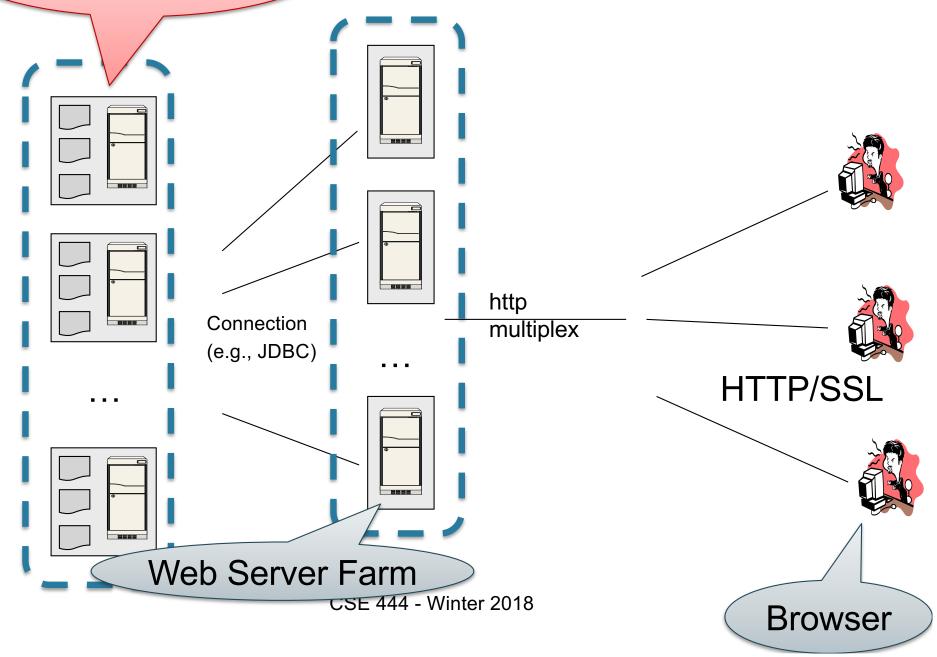
DBMS Deployment: Cloud



How to Scale?



Many DBMS instances: HARD w to Scale?



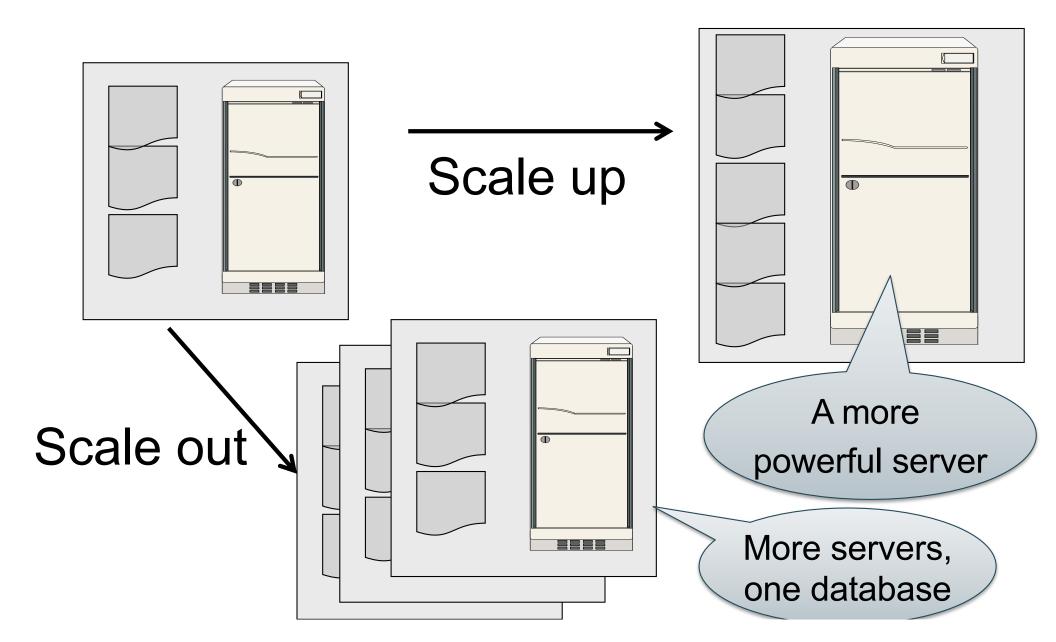
How to Scale?

 We can easily replicate the web servers and the application servers

 We cannot so easily replicate the database servers, because the database is unique

We need to design ways to scale up the DBMS

How to Scale a DBMS?



What to scale?

- OLTP: Transactions per second
 - OLTP = Online Transaction Processing

- OLAP: Query response time
 - OLAP = Online Analytical Processing

Scaling Transactions Per Second

- Amazon
- Facebook
- Twitter
- ... your favorite Internet application...
- Goal is to scale OLTP workloads

We will get back to this next week

Scaling Single Query Response Time

Goal is to scale OLAP workloads

That means the analysis of massive datasets

This Week: Focus on Scaling a Single Query

Big Data

• Buzzword?

- Definition from industry:
 - High Volume

http://www.gartner.com/newsroom/id/1731916

- High Variety
- High Velocity

Big Data

Volume is not an issue

- Databases do parallelize easily; techniques available from the 80's
 - Data partitioning
 - Parallel query processing
- SQL is embarrassingly parallel
- We will learn how to do this

Big Data

New workloads are an issue

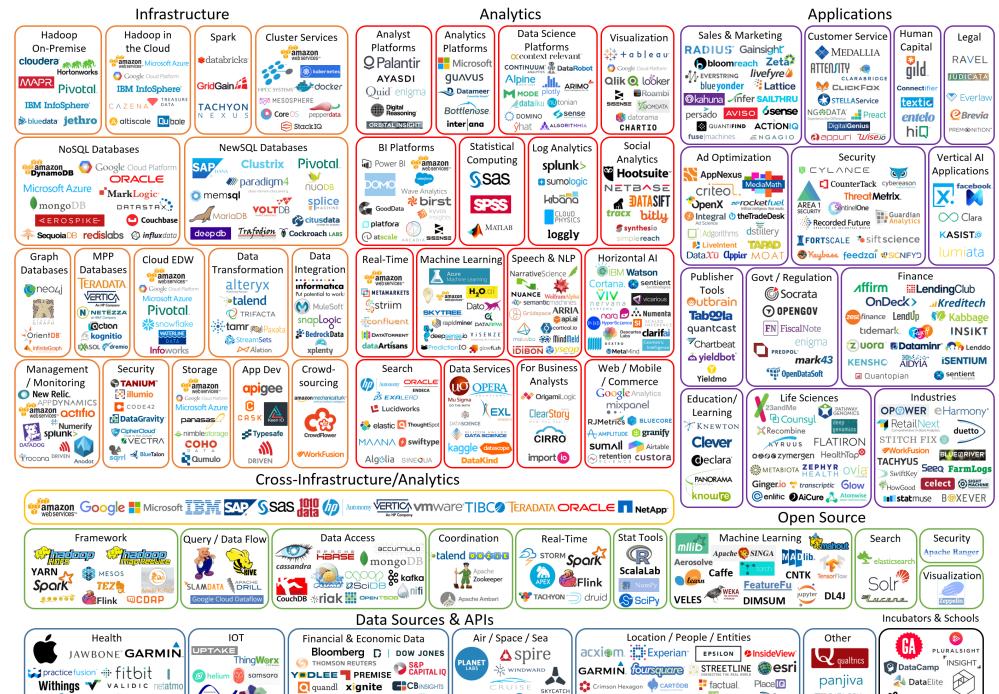
- Big volumes, small analytics
 - OLAP queries: join + group-by + aggregate
 - Can be handled by today's RDBMSs (e.g., Teradata)
- Big volumes, big analytics
 - More complex Machine Learning, e.g. click prediction, topic modeling, SVM, k-means
 - Requires innovation Active research area

Data Analytics Companies

Fifteen years ago, explosion of db analytics companies

- Greenplum founded in 2003 acquired by EMC in 2010; A parallel shared-nothing DBMS (this lecture)
- Vertica founded in 2005 and acquired by HP in 2011; A parallel, column-store shared-nothing DBMS
- DATAllegro founded in 2003 acquired by Microsoft in 2008; A parallel, shared-nothing DBMS
- Aster Data Systems founded in 2005 acquired by Teradata in 2011; A parallel, shared-nothing, MapReduce-based data processing system (in two lectures). SQL on top of MapReduce
- Netezza founded in 2000 and acquired by IBM in 2010. A parallel, shared-nothing DBMS.

Big Data Landscape 2016 (Version 3.0)



mattermark StockTwits @estimize PLAID

Human API

kinsa

Last Updated 3/23/2016

Airware Tone Drone Deploy

CIRCULATE Placemeter BASIS Sense

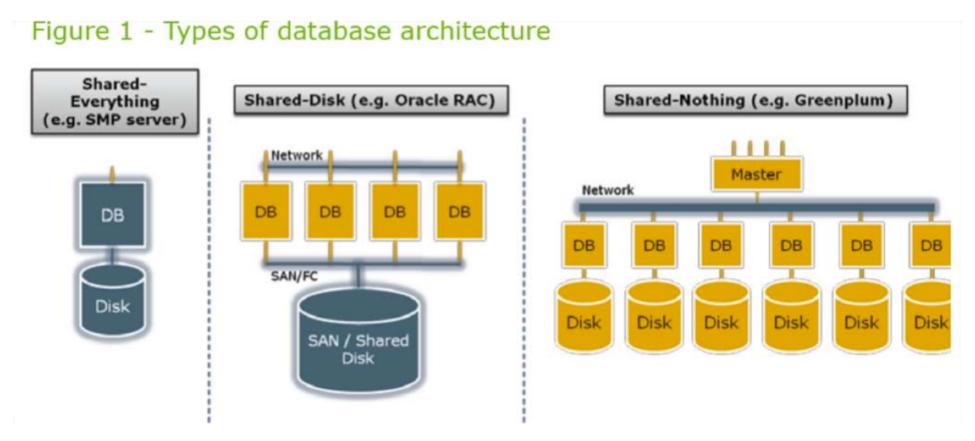
The Data Incubator METIS

FIRSTMARK

Two Fundamental Approaches to Parallel Data Processing

- Parallel databases, developed starting with the 80s (this lecture)
 - For both OLTP (transaction processing)
 - And for OLAP (decision support queries)
- MapReduce, first developed by Google, published in 2004 (in two lectures)
 - Only for decision support queries

Architectures for Parallel DMBSs



From: Greenplum Database Whitepaper

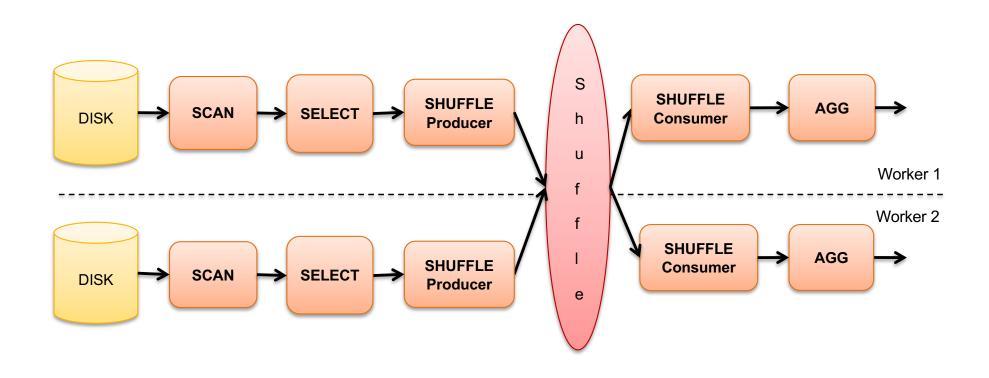
SAN = "Storage Area Network"

Our Focus: Shared-Nothing DBMS

Parallel Query Evaluation

- Multiple DBMS instances (= processes) also called "nodes" execute on machines in a cluster
 - One instance plays role of the coordinator
 - Other instances play role of workers
- Applications interact with coordinator
- Workers execute queries
 - Typically all workers execute the same plan
 - Intra-operator parallelism & intra-query parallelism
 - Some operations may execute at subsets of workers
 - Workers can execute multiple queries at the same time
 - Inter-query parallelism

Parallel Query Execution



Parallel Query Evaluation

New operator: Shuffle

- Origin: Exchange operator from Volcano system
- Serves to re-shuffle data between processes
 - Handles data routing, buffering, and flow control
- Two parts: ShuffleProducer and ShuffleConsumer
- Producer:
 - Pulls data from child operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
- Consumer:
 - Buffers input data from n producers and makes it available to operator through getNext() interface

Parallel DBMSs

Performance metrics

- Speedup: More nodes, same data -> higher speed
- Scaleup: More nodes, more data -> same speed
- Speed = query execution time

Key challenges

- Start-up costs
- Interference
- Skew

Parallel Query Processing

How do we compute these operations on a sharednothing parallel db?

- Selection: $\sigma_{A=123}(R)$
- Group-by: $\gamma_{A,sum(B)}(R)$
- Join: R ⋈ S

Before we answer that: how do we store R (and S) on a shared-nothing parallel db?

Data:

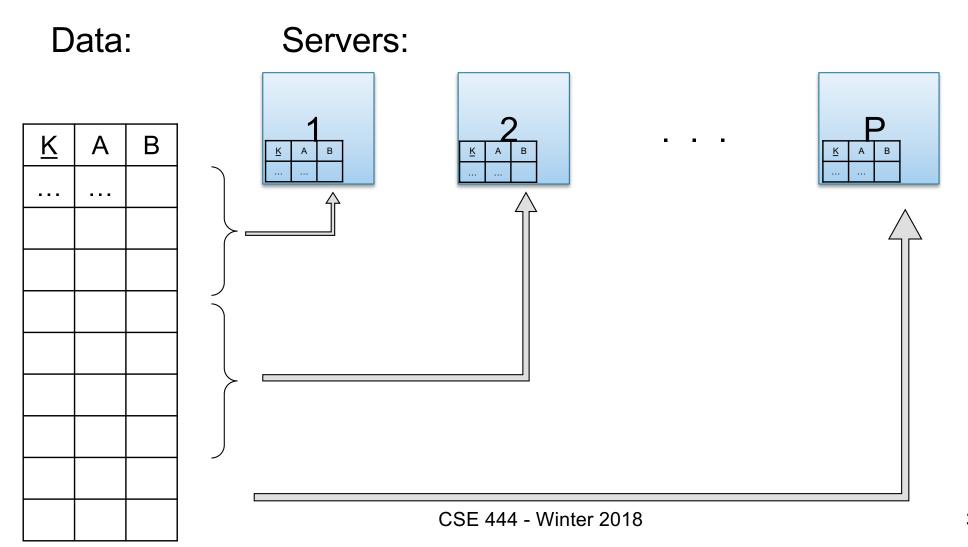
Servers:

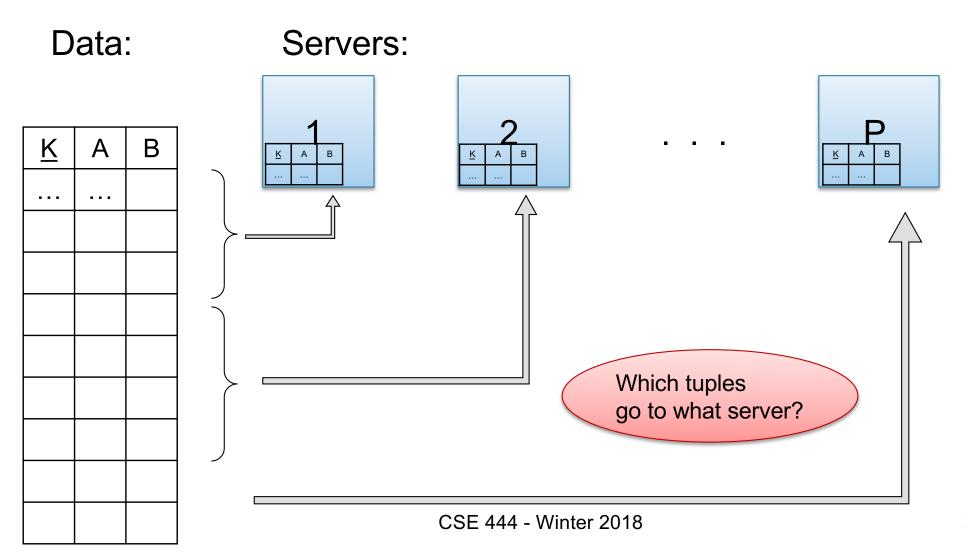
<u>K</u>	Α	В
	• • •	

1

2

. . .



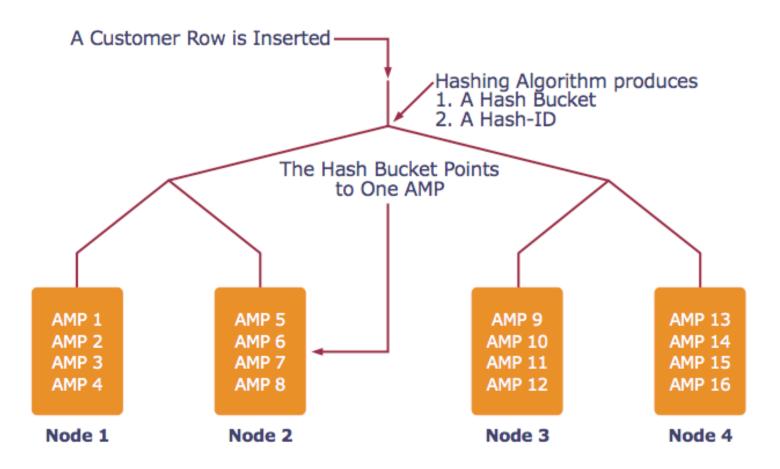


- Relation R split into P chunks R₀, ..., R_{P-1}, stored at the P nodes
- Block partitioned
 - Each group of k tuples goes to a different node
- Hash based partitioning on attribute A:
 - Tuple t to chunk h(t.A) mod P
- Range based partitioning on attribute A:
 - Tuple t to chunk i if $v_{i-1} < t.A < v_i$
- For hash and range partitioning: Beware of skew

All three choices are just special cases:

- For each tuple, compute bin = f(t)
- Different properties of the function *f* determine hash vs. range vs. round robin vs. anything

Example: Teradata – Loading



AMP = "Access Module Processor" = unit of parallelism

Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1<A< v2}(R)$

- On a conventional database: cost = B(R)
- Q: What is the cost on a parallel database with P processors?
 - Block partitioned
 - Hash partitioned
 - Range partitioned

Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1<A< v2}(R)$

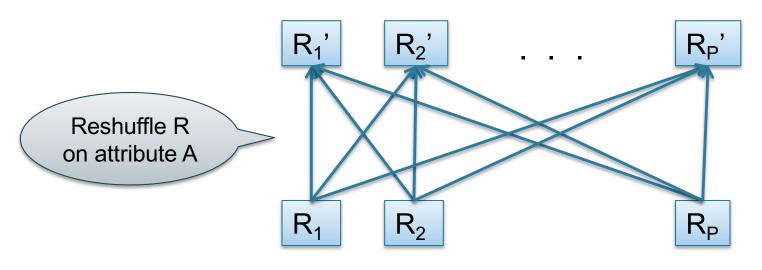
- On a conventional database: cost = B(R)
- Q: What is the cost on a parallel database with P processors? A: B(R) / P, but

 - Block partitioned
 all servers do the work
 - Hash partitioned
 some servers do the work
 - Range partitioned -- some servers do the work

Basic Parallel GroupBy

Data: R(K,A,B,C) -- hash-partitioned on K

Query: $\gamma_{A,sum(B)}(R)$



. . .

Basic Parallel GroupBy

 Step 1: each server i partitions its chunk R_i using a hash function h(t.A) mod P: R_{i,0}, R_{i,1}, ..., R_{i,P-1}

• Step 2: server j computes $\gamma_{A, \text{sum}(B)}$ on $R_{0,j}, R_{1,j}, \ldots, R_{P-1,j}$

Speedup and Scaleup

- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
- If we double both P and the size of R, what is the new running time?

Speedup and Scaleup

- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
 - Half (each server holds ½ as many chunks)
- If we double both P and the size of R, what is the new running time?
 - Same (each server holds the same # of chunks)

Basic Parallel GroupBy

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Basic Parallel GroupBy

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Distributive	Algebraic	Holistic
sum($a_1+a_2++a_9$)= sum(sum($a_1+a_2+a_3$)+ sum($a_4+a_5+a_6$)+ sum($a_7+a_8+a_9$))	avg(B) = sum(B)/count(B)	median(B)

YES

Compute partial aggregates before shuffling

Example Query with Group By

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

Machine 1

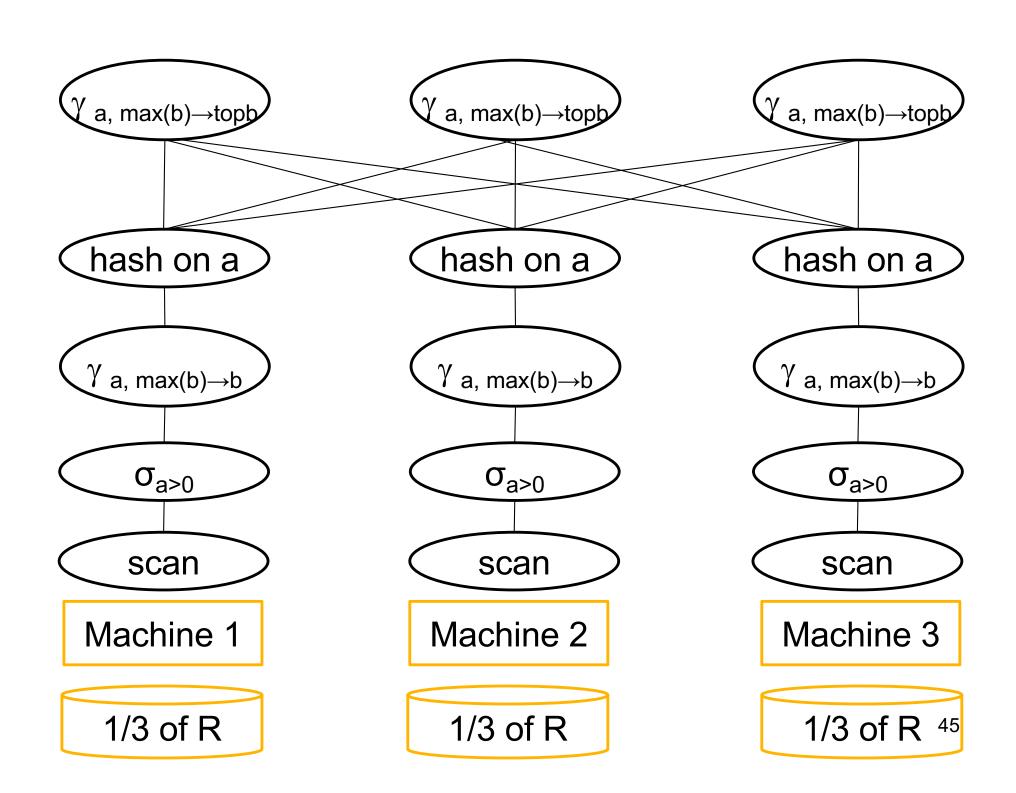
Machine 2

Machine 3

1/3 of R

1/3 of R

1/3 of R 44

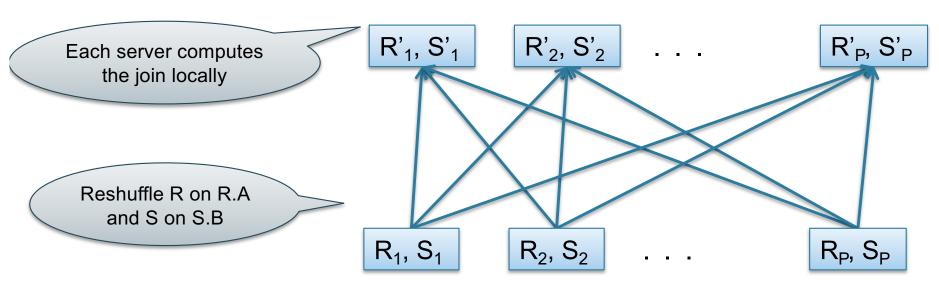


Parallel Join: $R \bowtie_{A=B} S$

- Data: R(K1,A, C), S(K2, B, D)
- Query: $R(K1,A,C) \bowtie S(K2,B,D)$

Parallel Join: $R \bowtie_{A=B} S$

- Data: R(K1,A, C), S(K2, B, D)
- Query: R(K1,A,C) ⋈ S(K2,B,D)



Initially, both R and S are horizontally partitioned on K1 and K2

Parallel Join: $R \bowtie_{A=B} S$

Step 1

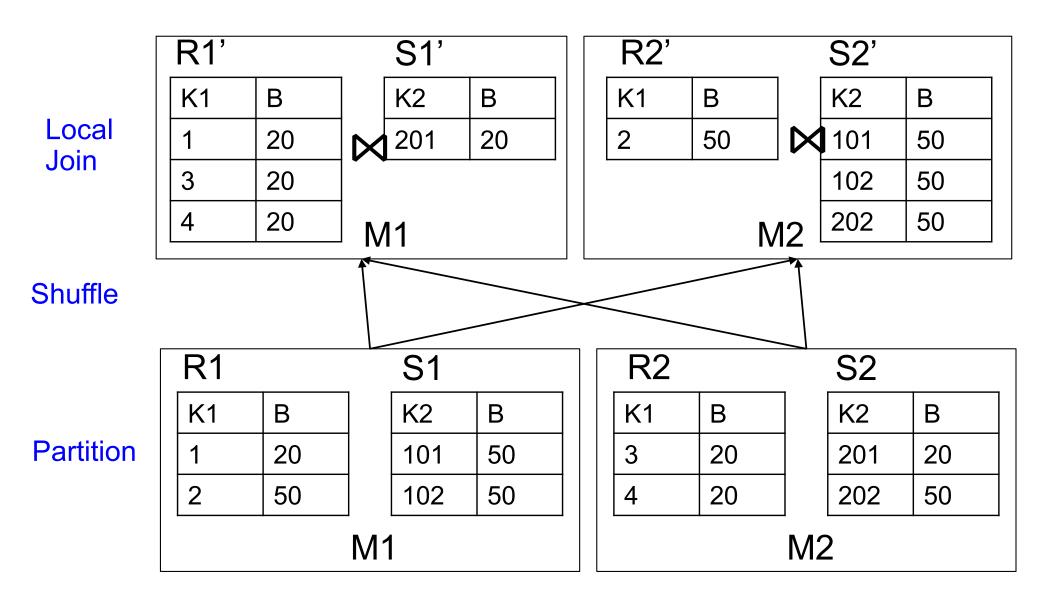
- Every server holding any chunk of R partitions its chunk using a hash function h(t.A) mod P
- Every server holding any chunk of S partitions its chunk using a hash function h(t.B) mod P

• Step 2:

 Each server computes the join of its local fragment of R with its local fragment of S Data: R(K1,A, B), S(K2, B, C)

Query: $R(K1,A,B) \bowtie S(K2,B,C)$

Join on R.B = S.B



Optimization for Small Relations

When joining R and S

- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes
- Also called a small join or a broadcast join

Other Interesting Parallel Join Implementation

Skew:

- Some partitions get more input tuples than others Reasons:
 - Range-partition instead of hash
 - Some values are very popular:
 - Heavy hitters values; e.g. 'Justin Bieber'
 - Selection before join with different selectivities
- Some partitions generate more output tuples than others

Some Skew Handling Techniques

If using range partition:

- Ensure each range gets same number of tuples
- E.g.: $\{1, 1, 1, 2, 3, 4, 5, 6\} \rightarrow [1,2]$ and [3,6]
- Eq-depth v.s. eq-width histograms

Some Skew Handling Techniques

Create more partitions than nodes

And be smart about scheduling the partitions

Note: MapReduce uses this technique

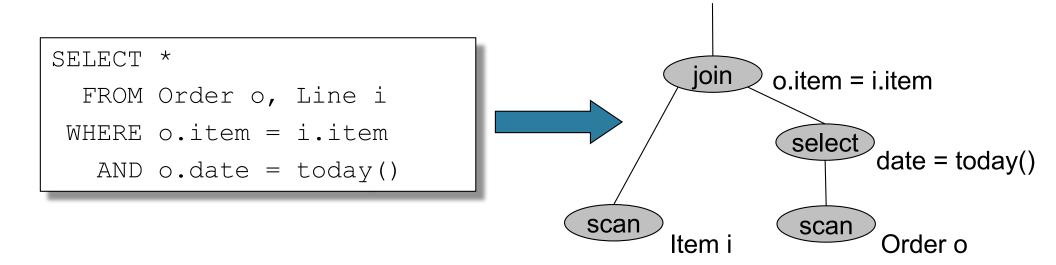
Some Skew Handling Techniques

Use subset-replicate (a.k.a. "skewedJoin")

- Given R ⋈_{A=B} S
- Given a heavy hitter value R.A = 'v' (i.e. 'v' occurs very many times in R)
- Partition R tuples with value 'v' across all nodes e.g. block-partition, or hash on other attributes
- Replicate S tuples with value 'v' to all nodes
- R = the build relation
- S = the probe relation

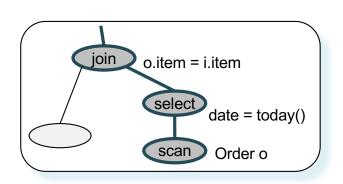
Example: Teradata – Query Execution

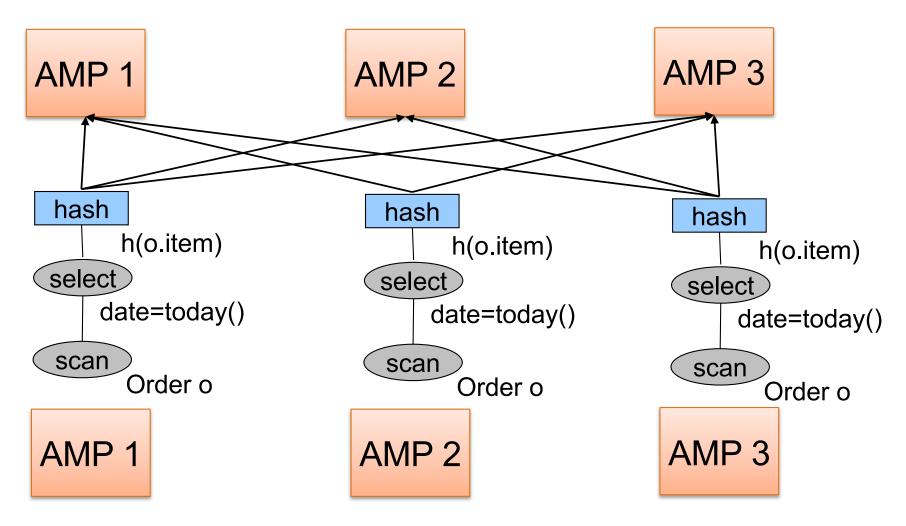
Find all orders from today, along with the items ordered



Order(oid, item, date), Line(item, ...)

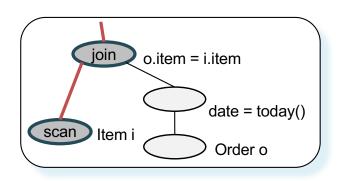
Query Execution

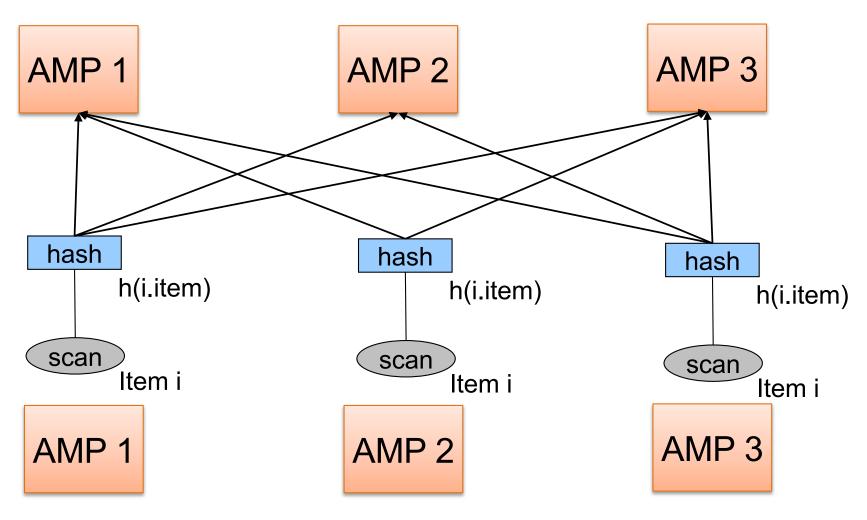




CSE 444 - Winter 2018

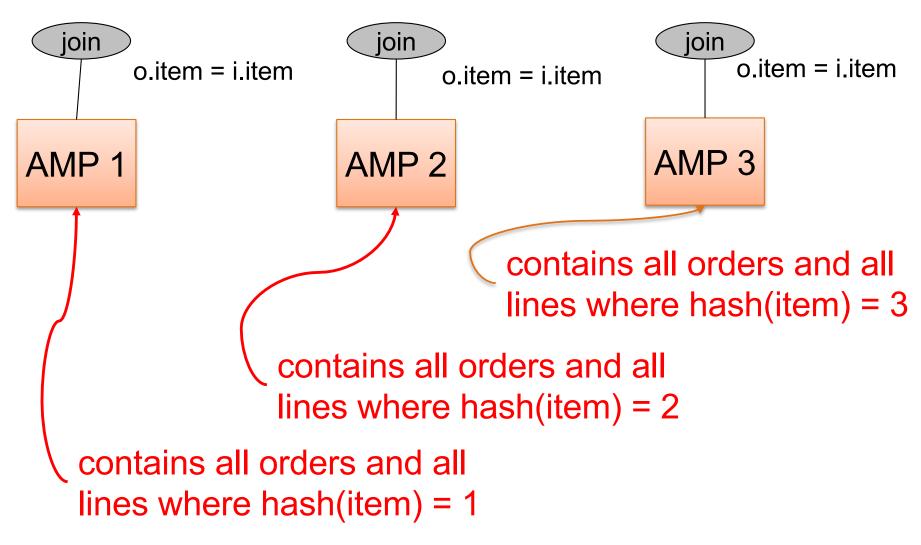
Query Execution





CSE 444 - Winter 2018

Query Execution



Example 2

SELECT *

FROM R, S, T

WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

