CSE 444: Database Internals

Lectures 17-19
Transactions: Recovery

CSE 444 - Winter 2018

The Usual Reminders

« HW3 is due on Wednesday
« HW4 has been released

* Lab3 is due on Friday
— EXTENDED to SUNDAY!

CSE 444 - Winter 2018

Readings for Lectures 17-19

Main textbook (Garcia-Molina)

« Ch.17.2-4,18.1-3, 18.8-9
Second textbook (Ramakrishnan)
 Ch. 16-18

Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science
and Engineering, A. Tucker, ed., CRC Press,
Boca Raton, 1997.

CSE 444 - Winter 2018

Transaction Management

Two parts:
« Concurrency control: ACID
* Recovery from crashes: ACID

We already discussed concurrency control
You are implementing locking in lab3

Today, we start recovery

CSE 444 - Winter 2018

System Crash

Client 1:
BEGIN TRANSACTION
UPDATE Account1

SET balance= balance — 500 =‘ .

UPDATE Account2
SET balance = balance + 500
COMMIT

CSE 444 - Winter 2018

Recovery

Type of Crash

Prevention

Wrong data entry

Constraints and
Data cleaning

Disk crashes

Redundancy:
e.g. RAID, archive

Data center failures

Remote backups or
replicas

System failures:
e.g. power

System Failures

« Each transaction has internal state

* When system crashes, internal state is lost
— Don’t know which parts executed and which didn’t
— Need ability to undo and redo

CSE 444 - Winter 2018

=eap Buffer Manager Review

WRITE Page requests from higher-level code

Files and access methods
Bu?fer 000l Buffer pool manager
Disk page
Pag Main
Free frame—— memory
INPUT 1 choice of frame dictated
OUTPUT by replacement policy

Disk = collection
of blocks

i 1 page corresponds

to 1 disk block

Data must be in RAM for DBMS to operate on it!
Buffer pool = table of <frame#, pageid> pairs

Buffer Manager Review

» Enables higher layers of the DBMS to
assume that needed data is in main memory

« Caches data in memory. Problems when
crash occurs:
— If committed data was not yet written to disk
— |If uncommitted data was flushed to disk

CSE 444 - Winter 2018

Transactions

* Assumption: the database is composed
of elements.

* 1 element can be either:
— 1 page = physical logging
— 1 record = logical logging

* Aries uses physiological logging
— (will discuss later)

CSE 444 - Winter 2018

10

Primitive Operations of

Transactions
READ(Xt)

— copy element X to transaction local variable t
WRITE(X,t)

— copy transaction local variable t to element X

INPUT(X)

— read element X to memory buffer

OUTPUT(X)

— write element X to disk

CSE 444 - Winter 2018

11

Running Example
BEGIN TRANSACTION

READ(A});

t = t*2; Initially, A=B=8.

WR|TE(A,t); Atomicity requires that either
READ(B,); (2) oot not sommit and AB=8
t:=1t2;

WRITE(B, 1)

COMMIT;

CSE 444 - Winter 2018 12

READ(A}); t := t*2; WRITE(A,1):
READ(B,t); t := t*2; WRITE(B,1)

Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT

|s this bad ?

Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B, 1) 16 16 16 8 8

OUTPUT(A) | 16 16 16 16 8

OUTPUT(B)| 16 16 16 16 1§E

COMMIT

|s this bad ? Yes it's bad: A=16, B=8....
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 1§\icr
COMMIT

|s this bad ?

Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B, 1) 16 16 16 8 8

OUTPUT(A) | 16 16 16 16 8

OUTPUT(B)| 16 16 16 16 16

COMMIT

ik

|s this bad ? Yes it's bad: A=B=16, but not committed
Action t MemA | MemB | Disk A | Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

COMMIT

ik

|s this bad ?

Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B, 1) 16 16 16 8 8

OUTPUT(A) | 16 16 16 16 esz\i\cr

OUTPUT(B)| 16 16 16 16 16

COMMIT

|s this bad ? No: that's OK
Action t MemA | MemB | Disk A | Disk B
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 észicr
OUTPUT(B) 16 16 16 16 16
COMMIT

OUTPUT can also happen after COMMIT (details coming)
Action t MemA | MemB | Disk A | Disk B
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 o

OUTPUT can also happen after COMMIT (details coming)
Action t MemA | MemB | Disk A | Disk B
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT 5
OUTPUT(A) 16 16 16 16
OUTPUT(B) 16 16 16 16 16 |

%}é

Atomic Transactions

 FORCE or NO-FORCE

— Should all updates of a transaction be forced to
disk before the transaction commits?

« STEAL or NO-STEAL

— Can an update made by an uncommitted
transaction overwrite the most recent committed
value of a data item on disk?

CSE 444 - Winter 2018

22

Force/No-steal

 FORCE: Pages of committed
transactions must be forced to disk
before commit

* NO-STEAL.: Pages of uncommitted
transactions cannot be written to disk

Easy to implement (how?) and ensures atomicity

CSE 444 - Winter 2018 23

No-Force/Steal

 NO-FORCE: Pages of committed
transactions need not be written to disk

« STEAL.: Pages of uncommitted
transactions may be written to disk

In either case, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

CSE 444 - Winter 2018 24

Write-Ahead Log (WAL)

The Log: append-only file containing log records
* Records every single action of every TXN

* Forces log entries to disk as needed

« After a system crash, use log to recover

Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

CSE 444 - Winter 2018 25

Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

CSE 444 - Winter 2018 26

UNDO Log

FORCE and STEAL

CSE 444 - Winter 2018

27

Undo Logging

Log records

« <START T>
— transaction T has begun

« <COMMIT T>

— T has committed

« <ABORT T>
— T has aborted
e <T,X,v>
— T has updated element X, and its o/d value was v

— Idempotent, physical log records
CSE 444 - Winter 2018

28

Action t Mem A | MemB | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

CSE 444 - Winter 2018

29

Action t Mem A | MemB | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8 %
OUTPUT(B) 16 16 16 16 16 =
COMMIT <COMMIT T>
WHAT DO WE DO 2 'SE 444 - Winter 2018 30

Action t Mem A | MemB | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A)| 16 16 16 16 8
OUTPUT(B)| 16 16 16 16 16 %
COMMIT <COMMIT T>
WHAT DO WE DO ? | We UNDO by setting B=8 and A=8

Action t Mem A | MemB | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ? F444'Wimer e {?N'i?

Action t Mem A | MemB | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ? F444' Not

ning: log contains COMMIT

After Crash

* In the first example:
— We UNDO both changes: A=8, B=8

— The transaction is atomic, since none of its actions have
been executed

* |n the second example
— We don’t undo anything

— The transaction is atomic, since both it's actions have been
executed

CSE 444 - Winter 2018

34

Recovery with Undo Log
After system’s crash, run recovery manager

 Decide for each transaction T whether it is
completed or not

— <START T>....<COMMIT T>.... =yes
— <START T>....<ABORT T>....... = yes
—<START T>..cc . = no

« Undo all modifications by incomplete
transactions

CSE 444 - Winter 2018

35

Recovery with Undo Log

Recovery manager:

* Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>:if T is not completed

then write X=v to disk

else ignore
<START T>:ignore

CSE 444 - Winter 2018

36

Recovery with Undo Log

<T16,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?

Question 3:
What happens if second
crash during recovery?

<T2,X2’V2§%\//\/\V/:’§ 37

Recovery with Undo Log

Question1: Which updates
are undone ?

<T6,X6,v6>
Question 2:

How far back do we need to

-<HSTART T5> read in the log ?
<START T4> To the beginning.

<T1,X1,v1>

<T5,X5,v5> Question 3:

<T4, X4 v4> What happens if second
<COMMIT T5>| crash during recovery?
<T3,X3,v3> No problem! Log records are

<T2,X2,V223:f%emp°te”t- Can reappl%/é

Action t Mem A | MemB | Disk A | DiskB UNDO Log
| <START T>
INPUT(A) When must 8
READ(A.1 3 K we force pages) 3
to disk ? /
t=t*2 16 8 8
Z N\
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B.t) 8 16 8 8 8 @)
-
t=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OU?MDT(A) |, 16 16 16 16 8 N
L
ouTRUT®) | £ 16 16 16 16 16
COMMIT <COMMIT T>

CSE 444 - Winter 2018

39

Action t Mem A | MemB | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,) 8 8 8 8
t:=t+2 16 8 8 8
WRITE(AL) | 16 16 8 8 /{ <T,A,8> >
INPUT(B) | 16 16 8 8 1+ 8
READ(B,) 8 16 y/ 8 8
t:=t2 16 BE: 8 8
WRITE(B, t 16 16 8 8 /(<T,B,8> >
GUTPU(T(§ 16 16 | 16— 16 T
N //
@m/re/ 16 16 16 16

COMMIT |

{COMMIT,Z

RULES: log entry before OUTPUT before COMMIT

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must
be written to disk before <COMMIT T>

 Hence: OUTPUTs are done early,
before the transaction commits

CSE 444 - Winter 2018 41

Checkpointing

Checkpoint the database periodically

« Stop accepting new transactions

« Wait until all current transactions complete
* Flush log to disk

* Write a <CKPT> log record, flush
 Resume transactions

CSE 444 - Winter 2018 42

Undo Recovery with
Checkpointing

During recovery,
Can stop at first
<CKPT>

<T9,X9,v9>

(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

> other transactions

> transactions T2,T3,T4,T5

43

Nonquiescent Checkpointing

* Problem with checkpointing: database
freezes during checkpoint

* Would like to checkpoint while database
IS operational

 Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

CSE 444 - Winter 2018 44

Nonquiescent Checkpointing

 Write a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all active
transactions. Flush log to disk

* Continue normal operation

 When all of T1,...,Tk have completed,
write <END CKPT>. Flush log to disk

CSE 444 - Winter 2018 45

Undo Recovery with
Nonquiescent Checkpointing

During recovery,
Can stop at first
<CKPT>

Q: do we need
<END CKPT> ?

<START CKPT T4, T5, T6>

<END CKPT>

>earlier transactions plus
T4, T5, T6

>T4, T5, T6, plus
later transactions

» later transactions

46

Undo Recovery with
Nonquiescent Checkpointing

During recovery,
Can stop at first
<CKPT>

<START CKPT T4, T5, T6>

<END CKPT>

Q: do we need

<END CKPT> Not really

>earlier transactions plus
T4, T5, T6

>T4, T5, T6, plus
later transactions

» later transactions

47

Implementing ROLLBACK

 Recall: a transaction can end in COMMIT
or ROLLBACK

 |ldea: use the undo-log to implement
ROLLBACK

 How ?
— LSN = Log Sequence Number

— Log entries for the same transaction are
inked, using the LSN'’s

— Read log in reverse, using LSN pointers

CSE 444 - Winter 2018 48

REDO Log

NO-FORCE and NO-STEAL

CSE 444 - Winter 2018

49

Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16
OUTPUT(B) 16 16 16 16

8SY Crash!
16

CSE 444 - Winter 2018

50

Is this bad ? Yes, it's bad: A=16, B=8
Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8§Crash:
OUTPUT(B) 16 16 16 16 16

CSE 444 - Winter 2018 51

Is this bad ?

% Crash!

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8 =
OUTPUT(B) 16 16 16 16 16

CSE 444 - Winter 2018

52

Is this bad ? Yes, it's bad: lost update
Action t MemA | Mem B | Disk A | DiskB
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B, 1) 16 16 16 8 8
COMMIT
OUTPUT(A)| 16 16 16 16 g —
OUTPUT(B)| 16 16 16 16 16

CSE 444 - Winter 2018 53

Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

CSE 444 - Winter 2018

54

Is this bad ? No: that's OK.
Action t Mem A | Mem B | Disk A | Disk B
READ(A,) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

CSE 444 - Winter 2018

55

Redo Logging

One minor change to the undo log:

« <T,X,v>=T has updated element X, and
its new value is v

CSE 444 - Winter 2018 56

Action t Mem A | MemB | Disk A | Disk B REDO Log
<START T>
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

CSE 444 - Winter 2018

S7

Action t Mem A | MemB | Disk A | Disk B REDO Log
<START T>
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 =
OUTPUT(B) 16 16 16 16 16 M

How do we recover ?

CSE 444 - Winter 2018

58

Action t Mem A | MemB | Disk A | Disk B REDO Log
<START T>
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 =
OUTPUT(B) 16 16 16 16 16 M

How do we recover ? | C

We REDO by setting A=16 and B=16

Recovery with Redo Log

After system’s crash, run recovery manager

« Step 1. Decide for each transaction T whether
it is committed or not
— <START T>....<COMMIT T>.... =yes
— <START T>....<ABORT T>....... =no
— <START T>. i =no
« Step 2. Read log from the beginning, redo all

updates of committed transactions

CSE 444 - Winter 2018 60

Recovery with Redo Log

<START T1>
<T1,X1,v1>

<START T2> sh .
<T2. X2, v2> ow actions

<START T3> during recovery
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,vo>

Crash!

CSE 444 - Winter 2018 61

Nonquiescent Checkpointing

Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active txn’s

Flush to disk all blocks of committed
transactions (dirty blocks)

Meantime, continue normal operation

When all blocks have been written, write
<END CKPT>

CSE 444 - Winter 2018 62

Nonquiescent Checkpointing

Step 1: look for
The last
<END CKPT>

All OUTPUTs
of T1 are
known to be on disk

Cannot
use

<START T1>
<COMMIT T1>
<START T4>

<START CKPT T4, T5, T6>

<END CKPT>

_<START CKPT T9, T10>

Step 2: redo
from the
earliest
start of

T4, T5, T6
ignoring
transactions
committed
earlier

63

Action t Mem A I/M/J“'\'\kl Disk B REDO Log
/~ When must N <START T>
READ(A1) 3 g\ we force pages /g
=t 16 5 0 disk 2 8
WRITEAL | 16 16 8 8 <TA, 16>
READBY | 8 16 8 8 8
=2 16 16 8 8 8 @)
“
WRITEBY) | 16 16 16 8 8 <TB.16>
COMMIT <COMMIT T>
OUTr{L}r(A) 16 16 16 16 8
OUTEMT(B)E/ 16 16 16 16 16

CSE 444 - Winter 2018

64

Action t Mem A | MemB | Disk A | DiskB REDO Log
<START T>
READ(A 1) 8 8 8 8
t=t+2 16 8 8 8
WRITEAL | 16 16 8 8 <TA,16>
READ(B,1) 8 16 8 8 8
t=t+2 16 16 8 8 8
WRITEB,) | 16 16 16 8 8 <T.B.16>
COMMIT NO-STEAL <coMMIT ﬁ»
@TPUT(A) 16 16 6 | 4w—38 |
m@/m/ — 16 | 16 16 16

RULE: OUTPUT after COMMIT

65

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk

before OUTPUT(X)
NO-STEAL

« Hence: OUTPUTs are done /[ate

CSE 444 - Winter 2018 66

Comparison Undo/Redo

* Undo logging: OUTPUT must be
done early:

— Inefficient

» Redo logging: OUTPUT must be
done late:

—Inflexible

CSE 444 - Winter 2018

67

Comparison Undo/Redo

Steal/Force

* Undo logging:
— OUTPUT must be done early

— If <COMMIT T> is seen, T definitely has written all its data to
disk (hence, don’t need to redo) — inefficient

« Redo logging No-Steal/No-Force

— OUTPUT must be done late

— If <COMMIT T> is not seen, T definitely has not written any
of its data to disk (hence there is not dirty data on disk, no
need to undo) — inflexible

* Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

Steal/No-Force

CSE 444 - Winter 2018 68

Undo/Redo Logging

Log records, only one change

« <T,X,u,v>=T has updated element X, its
old value was u, and its new value is v

CSE 444 - Winter 2018 69

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

CSE 444 - Winter 2018 70

Action T MemA | MemB | Disk A Disk B Log
<START T>
REAT (A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want:; before/after COMMIT 7

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
* Redo all committed transaction, top-down
* Undo all uncommitted transactions, bottom-up

CSE 444 - Winter 2018 72

Recovery with Undo/Redo Log

<START T1> 1
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

CSE 444 - Winter 2018

73

ARIES

CSE 444 - Winter 2018

74

Aries

ARIES pieces together several techniques into a
comprehensive algorithm

Developed at IBM Almaden, by Mohan
IBM botched the patent, so everyone uses it now

Several variations, e.g. for distributed
transactions

CSE 444 - Winter 2018 75

Log Granularity

Two basic types of log records for update operations

* Physical log records
— Position on a particular page where update occurred
— Both before and after image for undo/redo logs
— Benefits: I[dempotent & updates are fast to redo/undo

* Logical log records
— Record only high-level information about the operation

— Benefit: Smaller log

— BUT difficult to implement because crashes can occur in
the middle of an operation

CSE 444 - Winter 2018 76

Granularity in ARIES

* Physiological logging

— Log records refer to a single page

— But record logical operation within the page
» Page-oriented logging for REDO

— Necessary since can crash in middle of complex op.
 Logical logging for UNDO

— Enables tuple-level locking!

— Must do logical undo because ARIES will only undo
loser transactions (this also facilitates ROLLBACKS)

CSE 444 - Winter 2018 77

ARIES Recovery Manager

Log entries:
« <START T> --when T begins
 Update: <T,X,u,v>
— T updates X, old value=u, new value=v
— Logical description of the change

e <COMMIT T> or <ABORT T> then <END>
e <CLR> - we’ll talk about them later.

CSE 444 - Winter 2018

78

ARIES Recovery Manager

Rule:

o |f T modifies X, then <T,X,u,v> must be
written to disk before OUTPUT (X)

We are free to OUTPUT early or late

CSE 444 - Winter 2018

79

LSN = Log Sequence Number
 LSN = identifier of a log entry

— Log entries belonging to the same TXN are linked

» Each page contains a pageLSN:
— LSN of log record for latest update to that page

CSE 444 - Winter 2018 80

ARIES Data Structures

* Active Transactions Table

— Lists all active TXN's

— For each TXN: lastLSN = its most recent update LSN
* Dirty Page Table

— Lists all dirty pages

— For each dirty page: recoveryLSN (recLSN)= first LSN
that caused page to become dirty

 Write Ahead Log
— LSN, prevLSN = previous LSN for same txn

CSE 444 - Winter 2018 81

ARIES Data Structures

Dirty pages
pagelD recLSN
P5 102
P6 103
P7 101

Active transactions

transiD lastLSN
T100 104
T200 103

Log (WAL)
LSN | prevLSN |transiD | pagelD |Log entry
101 |- 7100 P7
102 |- T200 P5
103 | 102 T200 P6
104 | 101 T100 P5
Buffer Pool
P8 P2
P5 P6 P7
PageLSN=104 | PageLSN=103 | PageLSN=101

ARIES Normal Operation

T writes page P
 What do we do ?

CSE 444 - Winter 2018

83

ARIES Normal Operation

T writes page P
 What do we do ?

* Write <T,P,u,v> in the Log
* pageLSN=LSN
 prevLSN=lastLSN

* |lastLSN=LSN

* recLSN=if isNull then LSN

CSE 444 - Winter 2018

84

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* What do we do ?

Buffer manager wants INPUT(P)
* What do we do ?

CSE 444 - Winter 2018

85

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* Flush log up to pagelLSN

« Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

* Create entry in Dirty Pages table
recLSN = NULL

CSE 444 - Winter 2018

86

ARIES Normal Operation

Transaction T starts
« \What do we do ?

Transaction T commits/aborts
« \What do we do ?

CSE 444 - Winter 2018

87

ARIES Normal Operation

Transaction T starts
 Write <START T> in the log

* New entry T in Active TXN;
lastLSN = null

Transaction T commits
e Write <COMMIT T> in the log

* Flush log up to this entry
* Write <END>

CSE 444 - Winter 2018

88

Checkpoints

Write into the log

 Entire active transactions table
* Entire dirty pages table

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

CSE 444 - Winter 2018 89

ARIES Recovery

1. Analysis pass
— Figure out what was going on at time of crash
— List of dirty pages and active transactions
2. Redo pass (repeating history principle)
— Redo all operations, even for transactions that will not commit
— Get back to state at the moment of the crash

3. Undo pass
— Remove effects of all uncommitted transactions
— Log changes during undo in case of another crash during undo

CSE 444 - Winter 2018 90

ARIES Method lllustration

Start of oldest First update

in—progress potentially Checkpoint End of Log
transaction lost during crash
----| ---------------------------- I -- ll LOg (til]‘e _-":
il Analysis
- Redo
- i

Undo

3: The Three Passes of ARIES Restart

First undo and first redo log entry might be
In reverse order

[Figure 3 from Franklin97]

CSE 444 - Winter 2018 91

1. Analysis Phase

« Goal
— Determine point in log where to start REDO

— Determine set of dirty pages when crashed
» Conservative estimate of dirty pages

— ldentify active transactions when crashed

« Approach
— Rebuild active transactions table and dirty pages table

— Reprocess the log from the checkpoint
* Only update the two data structures

— Compute: firstLSN = smallest of all recoveryLSN

CSE 444 - Winter 2018

92

1. Analysis Phase

Log Chelckpoint (crash)
T >

firstLSN= 77<

Where do we start
the REDO phase ?

Dirty
pages

pagelD | recLSN | pagelD

Active transID | lastLSN | transID

txn

CSE 444 - Winter 2018 93

1. Analysis Phase

Log

Checkpoint
|

(crash)

Dirty
pages

Active
txn

|

firstLSN=min(regLSN)

pagelD

recLSN

pagelD

transiD

lastLSN

transiD

CSE 444 - Winter 2018

94

1. Analysis Phase

Log CheCprint (Crash)
firstLSN
Dirty - I = 'I'____l/__l_ ______ 1
pagelD |recLSN | pagelD eplay | pagelD ' recLSN ! pagelD !
pages history =—"~=- 1T T J:
F—————= t——————= F—————= .
| | | |
I D L
- translD | lastLSN |translD | |~*\- - ___
Active [transID [IastLSN [transID i
txn T T T |
A :h ——————— :h ——————— |
| |

2. Redo Phase

Main principle: replay history

* Process Log forward, starting from
firstLSN

 Read every log record, sequentially

* Redo actions are not recorded in the log
* Needs the Dirty Page Table

CSE 444 - Winter 2018 96

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
* Redo the action P=u and WRITE(P)
* Only redo actions that need to be redone

CSE 444 - Winter 2018 97

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
* If P is not in Dirty Page then no update
» If recLSN > LSN, then no update

* Read page from disk:
If pageLSN >= LSN, then no update

* Otherwise perform update

CSE 444 - Winter 2018 98

2. Redo Phase: Details

What happens if system crashes during
REDO ?

CSE 444 - Winter 2018

99

2. Redo Phase: Details

What happens if system crashes during
REDO ?

We REDO again! The pageLSN will ensure
that we do not reapply a change twice

CSE 444 - Winter 2018 100

3. Undo Phase

« Cannot “unplay” history, in the same
way as we ‘replay” history

« WHY NOT ?

CSE 444 - Winter 2018 101

3. Undo Phase

« Cannot “unplay” history, in the same
way as we ‘replay” history
« WHY NOT ?

— Undo only the loser transactions

— Need to support ROLLBACK: selective
undo, for one transaction

* Hence, logical undo v.s. physical redo

CSE 444 - Winter 2018 102

3. Undo Phase

Main principle: “logical” undo
« Start from end of Log, move backwards
* Read only affected log entries

* Undo actions are written in the Log as special
entries: (Compensating Log Records)

are redone, but never undone

CSE 444 - Winter 2018 103

3. Undo Phase: Detalls

 “Loser transactions” = uncommitted
transactions in Active Transactions Table

« ToUndo = set of lastLSN of loser transactions

CSE 444 - Winter 2018 104

3. Undo Phase: Detalls

While ToUndo not empty:

* Choose most recent (largest) LSN in ToUndo

« If LSN = regular record <T,P,u,v>:
— Undo v
— Write a CLR where CLR.undoNextLSN = LSN.prevLSN

« |[fLSN = CLR record:

— Don’tundo!

o if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log

CSE 444 - Winter 2018 105

3. Undo Phase: Detalls

y, A "3

i 1 ' ™ ™ ¢ f ~ ~
Write Write Write % (LR FOR CLR FOR s 72%% CLE FOR
page 1 page 1 page 1 ™ LSN 30 LSN 20 #ggggws LEN 10

C ‘. /
IJ()(I ti']l(ﬂ —" -- // ------------ // lllllllllllllllllllllllll ” llllll
it ’ % 2 %
LSN: g 20 30 s 40 50 Restart 60

. -

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]

CSE 444 - Winter 2018 106

3. Undo Phase: Detalls

What happens if system crashes during
UNDO ?

CSE 444 - Winter 2018 107

3. Undo Phase: Detalls

What happens if system crashes during
UNDO ?

We do not UNDO again! Instead, each CLR
iIs a REDO record: we simply redo the
undo

CSE 444 - Winter 2018 108

