
1

CSE 444: Database Internals

Lectures 17-19
Transactions: Recovery

CSE 444 - Winter 2018

The Usual Reminders

• HW3 is due on Wednesday

• HW4 has been released

• Lab3 is due on Friday
– EXTENDED to SUNDAY!

CSE 444 - Winter 2018 2

Readings for Lectures 17-19

Main textbook (Garcia-Molina)
• Ch. 17.2-4, 18.1-3, 18.8-9
Second textbook (Ramakrishnan)
• Ch. 16-18
Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science
and Engineering, A. Tucker, ed., CRC Press,
Boca Raton, 1997.

CSE 444 - Winter 2018 3

Transaction Management

Two parts:

• Concurrency control: ACID

• Recovery from crashes: ACID

We already discussed concurrency control

You are implementing locking in lab3

Today, we start recovery

CSE 444 - Winter 2018 4

5

System Crash

Client 1:
BEGIN TRANSACTION
UPDATE Account1
SET balance= balance – 500

UPDATE Account2
SET balance = balance + 500
COMMIT

Crash !

CSE 444 - Winter 2018

6

Recovery
Type of Crash Prevention

Wrong data entry Constraints and
Data cleaning

Disk crashes Redundancy:
e.g. RAID, archive

Data center failures Remote backups or
replicas

System failures:
e.g. power

DATABASE
RECOVERY

System Failures

• Each transaction has internal state

• When system crashes, internal state is lost
– Don’t know which parts executed and which didn’t
– Need ability to undo and redo

CSE 444 - Winter 2018 7

Buffer Manager Review

8

Disk

Main

memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds

to 1 disk block

Disk = collection

of blocks

Buffer pool manager

Files and access methods

READ

WRITE

INPUT

OUTPUT

choice of frame dictated

by replacement policy

Data must be in RAM for DBMS to operate on it!

Buffer pool = table of <frame#, pageid> pairs

Buffer Manager Review

• Enables higher layers of the DBMS to
assume that needed data is in main memory

• Caches data in memory. Problems when
crash occurs:
– If committed data was not yet written to disk
– If uncommitted data was flushed to disk

CSE 444 - Winter 2018 9

10

Transactions

• Assumption: the database is composed
of elements.

• 1 element can be either:
– 1 page = physical logging
– 1 record = logical logging

• Aries uses physiological logging
– (will discuss later)

CSE 444 - Winter 2018

11

Primitive Operations of
Transactions

• READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• INPUT(X)
– read element X to memory buffer

• OUTPUT(X)
– write element X to disk

CSE 444 - Winter 2018

12

Running Example

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

CSE 444 - Winter 2018

BEGIN TRANSACTION
READ(A,t);
t := t*2;
WRITE(A,t);
READ(B,t);
t := t*2;
WRITE(B,t)
COMMIT;

13

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

CSE 444 - Winter 2018

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Is this bad ?

CSE 444 - Winter 2018 14

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Crash !

Is this bad ? Yes it’s bad: A=16, B=8….

CSE 444 - Winter 2018 15

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Crash !

Is this bad ?

CSE 444 - Winter 2018 16

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT
Crash !

Is this bad ? Yes it’s bad: A=B=16, but not committed

CSE 444 - Winter 2018 17

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT
Crash !

Is this bad ?

CSE 444 - Winter 2018 18

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Crash !

Is this bad ? No: that’s OK

CSE 444 - Winter 2018 19

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Crash !

OUTPUT can also happen after COMMIT (details coming)

CSE 444 - Winter 2018 20

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

OUTPUT can also happen after COMMIT (details coming)

CSE 444 - Winter 2018 21

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Crash !

Atomic Transactions

• FORCE or NO-FORCE
– Should all updates of a transaction be forced to

disk before the transaction commits?
• STEAL or NO-STEAL

– Can an update made by an uncommitted
transaction overwrite the most recent committed
value of a data item on disk?

CSE 444 - Winter 2018 22

Force/No-steal

• FORCE: Pages of committed
transactions must be forced to disk
before commit

• NO-STEAL: Pages of uncommitted
transactions cannot be written to disk

CSE 444 - Winter 2018 23

Easy to implement (how?) and ensures atomicity

No-Force/Steal

• NO-FORCE: Pages of committed
transactions need not be written to disk

• STEAL: Pages of uncommitted
transactions may be written to disk

CSE 444 - Winter 2018 24

In either case, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

25

Write-Ahead Log (WAL)
The Log: append-only file containing log records
• Records every single action of every TXN
• Forces log entries to disk as needed
• After a system crash, use log to recover
Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

CSE 444 - Winter 2018

Policies and Logs

CSE 444 - Winter 2018 26

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

UNDO Log

CSE 444 - Winter 2018 27

FORCE and STEAL

28

Undo Logging
Log records
• <START T>

– transaction T has begun
• <COMMIT T>

– T has committed
• <ABORT T>

– T has aborted
• <T,X,v>

– T has updated element X, and its old value was v
– Idempotent, physical log records

CSE 444 - Winter 2018

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
CSE 444 - Winter 2018 29

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

CSE 444 - Winter 2018 30WHAT DO WE DO ?

31

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

CSE 444 - Winter 2018WHAT DO WE DO ? We UNDO by setting B=8 and A=8

32

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
Crash !CSE 444 - Winter 2018What do we do now ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
Crash !CSE 444 - Winter 2018 33

What do we do now ? Nothing: log contains COMMIT

After Crash
• In the first example:

– We UNDO both changes: A=8, B=8
– The transaction is atomic, since none of its actions have

been executed

• In the second example
– We don’t undo anything
– The transaction is atomic, since both it’s actions have been

executed

CSE 444 - Winter 2018 34

Recovery with Undo Log
After system’s crash, run recovery manager

• Decide for each transaction T whether it is
completed or not
– <START T>….<COMMIT T>…. = yes
– <START T>….<ABORT T>……. = yes
– <START T>……………………… = no

• Undo all modifications by incomplete
transactions

CSE 444 - Winter 2018 35

Recovery with Undo Log

Recovery manager:
• Read log from the end; cases:

<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed

then write X=v to disk
else ignore

<START T>: ignore

CSE 444 - Winter 2018 36

37

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?

Question 3:
What happens if second
crash during recovery?

Crash !

38

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?
To the beginning.

Question 3:
What happens if second
crash during recovery?
No problem! Log records are
idempotent. Can reapply.

Crash !

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

When must
we force pages
to disk ?

39CSE 444 - Winter 2018

40

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>FORCE
CSE 444 - Winter 2018

RULES: log entry before OUTPUT before COMMIT

41

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must
be written to disk before <COMMIT T>

• Hence: OUTPUTs are done early,
before the transaction commits

CSE 444 - Winter 2018

FORCE

Checkpointing

Checkpoint the database periodically
• Stop accepting new transactions
• Wait until all current transactions complete
• Flush log to disk
• Write a <CKPT> log record, flush
• Resume transactions

CSE 444 - Winter 2018 42

Undo Recovery with
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

transactions T2,T3,T4,T5

other transactions

43

Nonquiescent Checkpointing

• Problem with checkpointing: database
freezes during checkpoint

• Would like to checkpoint while database
is operational

• Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

CSE 444 - Winter 2018 44

Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active
transactions. Flush log to disk

• Continue normal operation

• When all of T1,…,Tk have completed,
write <END CKPT>. Flush log to disk

CSE 444 - Winter 2018 45

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T6

later transactions
Q: do we need
<END CKPT> ? 46

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T6

later transactions
Q: do we need
<END CKPT> Not really 47

Implementing ROLLBACK
• Recall: a transaction can end in COMMIT

or ROLLBACK
• Idea: use the undo-log to implement

ROLLBACK
• How ?

– LSN = Log Sequence Number
– Log entries for the same transaction are

linked, using the LSN’s
– Read log in reverse, using LSN pointers

CSE 444 - Winter 2018 48

REDO Log

CSE 444 - Winter 2018 49

NO-FORCE and NO-STEAL

50

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

CSE 444 - Winter 2018

51

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ? Yes, it’s bad: A=16, B=8

Crash !

CSE 444 - Winter 2018

52

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

CSE 444 - Winter 2018

53

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

Yes, it’s bad: lost update

CSE 444 - Winter 2018

54

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

CSE 444 - Winter 2018

55

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ? No: that’s OK.

Crash !

CSE 444 - Winter 2018

56

Redo Logging

One minor change to the undo log:

• <T,X,v>= T has updated element X, and
its new value is v

CSE 444 - Winter 2018

57

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

CSE 444 - Winter 2018

58

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

How do we recover ?

Crash !

CSE 444 - Winter 2018

59

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

How do we recover ?

Crash !

CSE 444 - Winter 2018We REDO by setting A=16 and B=16

Recovery with Redo Log

After system’s crash, run recovery manager

• Step 1. Decide for each transaction T whether

it is committed or not

– <START T>….<COMMIT T>…. = yes

– <START T>….<ABORT T>……. = no

– <START T>……………………… = no

• Step 2. Read log from the beginning, redo all

updates of committed transactions

CSE 444 - Winter 2018 60

61

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

CSE 444 - Winter 2018

Show actions
during recovery

Crash !

Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active txn’s

• Flush to disk all blocks of committed
transactions (dirty blocks)

• Meantime, continue normal operation
• When all blocks have been written, write

<END CKPT>

CSE 444 - Winter 2018 62

Nonquiescent Checkpointing
…
<START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are
known to be on disk

Cannot
use 63

64

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

When must
we force pages
to disk ?

CSE 444 - Winter 2018

65

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

NO-STEAL

CSE 444 - Winter 2018RULE: OUTPUT after COMMIT

66

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

• Hence: OUTPUTs are done late

CSE 444 - Winter 2018

NO-STEAL

67

Comparison Undo/Redo

• Undo logging: OUTPUT must be
done early:
– Inefficient

• Redo logging: OUTPUT must be
done late:
– Inflexible

CSE 444 - Winter 2018

Comparison Undo/Redo
• Undo logging:

– OUTPUT must be done early
– If <COMMIT T> is seen, T definitely has written all its data to

disk (hence, don’t need to redo) – inefficient
• Redo logging

– OUTPUT must be done late
– If <COMMIT T> is not seen, T definitely has not written any

of its data to disk (hence there is not dirty data on disk, no
need to undo) – inflexible

• Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

CSE 444 - Winter 2018 68

Steal/Force

No-Steal/No-Force

Steal/No-Force

Undo/Redo Logging

Log records, only one change
• <T,X,u,v>= T has updated element X, its
old value was u, and its new value is v

CSE 444 - Winter 2018 69

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

CSE 444 - Winter 2018 70

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT 71

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
• Redo all committed transaction, top-down
• Undo all uncommitted transactions, bottom-up

CSE 444 - Winter 2018 72

Recovery with Undo/Redo Log

CSE 444 - Winter 2018 73

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

ARIES

CSE 444 - Winter 2018 74

75

Aries
• ARIES pieces together several techniques into a

comprehensive algorithm
• Developed at IBM Almaden, by Mohan
• IBM botched the patent, so everyone uses it now
• Several variations, e.g. for distributed

transactions

CSE 444 - Winter 2018

Log Granularity
Two basic types of log records for update operations
• Physical log records

– Position on a particular page where update occurred
– Both before and after image for undo/redo logs
– Benefits: Idempotent & updates are fast to redo/undo

• Logical log records
– Record only high-level information about the operation
– Benefit: Smaller log
– BUT difficult to implement because crashes can occur in

the middle of an operation
CSE 444 - Winter 2018 76

Granularity in ARIES

• Physiological logging
– Log records refer to a single page
– But record logical operation within the page

• Page-oriented logging for REDO
– Necessary since can crash in middle of complex op.

• Logical logging for UNDO
– Enables tuple-level locking!
– Must do logical undo because ARIES will only undo

loser transactions (this also facilitates ROLLBACKs)
CSE 444 - Winter 2018 77

78

ARIES Recovery Manager

Log entries:
• <START T> -- when T begins
• Update: <T,X,u,v>

– T updates X, old value=u, new value=v
– Logical description of the change

• <COMMIT T> or <ABORT T> then <END>
• <CLR> – we’ll talk about them later.

CSE 444 - Winter 2018

79

ARIES Recovery Manager

Rule:
• If T modifies X, then <T,X,u,v> must be

written to disk before OUTPUT(X)

We are free to OUTPUT early or late

CSE 444 - Winter 2018

80

LSN = Log Sequence Number
• LSN = identifier of a log entry

– Log entries belonging to the same TXN are linked

• Each page contains a pageLSN:
– LSN of log record for latest update to that page

CSE 444 - Winter 2018

81

ARIES Data Structures
• Active Transactions Table

– Lists all active TXN’s
– For each TXN: lastLSN = its most recent update LSN

• Dirty Page Table
– Lists all dirty pages
– For each dirty page: recoveryLSN (recLSN)= first LSN

that caused page to become dirty
• Write Ahead Log

– LSN, prevLSN = previous LSN for same txn

CSE 444 - Winter 2018

ARIES Data Structures

pageID recLSN
P5 102
P6 103
P7 101

LSN prevLSN transID pageID Log entry
101 - T100 P7
102 - T200 P5
103 102 T200 P6
104 101 T100 P5

Dirty pages Log (WAL)

transID lastLSN
T100 104
T200 103

Active transactions
P8 P2 . . .

. . .

P5
PageLSN=104

P6
PageLSN=103

P7
PageLSN=101

Buffer Pool

WT100(P7)
WT200(P5)
WT200(P6)
WT100(P5)

82

83

ARIES Normal Operation

T writes page P
• What do we do ?

CSE 444 - Winter 2018

84

ARIES Normal Operation

T writes page P
• What do we do ?

• Write <T,P,u,v> in the Log
• pageLSN=LSN
• prevLSN=lastLSN
• lastLSN=LSN
• recLSN=if isNull then LSN

CSE 444 - Winter 2018

85

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
• What do we do ?

Buffer manager wants INPUT(P)
• What do we do ?

CSE 444 - Winter 2018

86

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
• Flush log up to pageLSN
• Remove P from Dirty Pages table
Buffer manager wants INPUT(P)
• Create entry in Dirty Pages table

recLSN = NULL

CSE 444 - Winter 2018

87

ARIES Normal Operation

Transaction T starts
• What do we do ?

Transaction T commits/aborts
• What do we do ?

CSE 444 - Winter 2018

88

ARIES Normal Operation

Transaction T starts
• Write <START T> in the log
• New entry T in Active TXN;

lastLSN = null
Transaction T commits
• Write <COMMIT T> in the log
• Flush log up to this entry
• Write <END>

CSE 444 - Winter 2018

89

Checkpoints

Write into the log

• Entire active transactions table
• Entire dirty pages table

CSE 444 - Winter 2018

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

90

ARIES Recovery
1. Analysis pass

– Figure out what was going on at time of crash
– List of dirty pages and active transactions

2. Redo pass (repeating history principle)
– Redo all operations, even for transactions that will not commit
– Get back to state at the moment of the crash

3. Undo pass
– Remove effects of all uncommitted transactions
– Log changes during undo in case of another crash during undo

CSE 444 - Winter 2018

91

ARIES Method Illustration

[Figure 3 from Franklin97]
CSE 444 - Winter 2018

First undo and first redo log entry might be
in reverse order

92

1. Analysis Phase
• Goal

– Determine point in log where to start REDO
– Determine set of dirty pages when crashed

• Conservative estimate of dirty pages

– Identify active transactions when crashed

• Approach
– Rebuild active transactions table and dirty pages table
– Reprocess the log from the checkpoint

• Only update the two data structures

– Compute: firstLSN = smallest of all recoveryLSN

CSE 444 - Winter 2018

1. Analysis Phase
(crash)Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

firstLSN= ??? Where do we start
the REDO phase ?

CSE 444 - Winter 2018 93

1. Analysis Phase
(crash)Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

firstLSN=min(recLSN)

94CSE 444 - Winter 2018

1. Analysis Phase
(crash)Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

pageID recLSN pageID

transID lastLSN transID

Replay
history

firstLSN

CSE 444 - Winter 2018 95

2. Redo Phase

Main principle: replay history

• Process Log forward, starting from

firstLSN
• Read every log record, sequentially

• Redo actions are not recorded in the log

• Needs the Dirty Page Table

CSE 444 - Winter 2018 96

97

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
• Redo the action P=u and WRITE(P)
• Only redo actions that need to be redone

CSE 444 - Winter 2018

98

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
• If P is not in Dirty Page then no update
• If recLSN > LSN, then no update
• Read page from disk:

If pageLSN >= LSN, then no update
• Otherwise perform update

CSE 444 - Winter 2018

99

2. Redo Phase: Details
What happens if system crashes during

REDO ?

CSE 444 - Winter 2018

100

2. Redo Phase: Details

What happens if system crashes during

REDO ?

We REDO again ! The pageLSN will ensure

that we do not reapply a change twice

CSE 444 - Winter 2018

3. Undo Phase

• Cannot “unplay” history, in the same
way as we “replay” history

• WHY NOT ?

CSE 444 - Winter 2018 101

3. Undo Phase

• Cannot “unplay” history, in the same
way as we “replay” history

• WHY NOT ?

– Undo only the loser transactions

– Need to support ROLLBACK: selective
undo, for one transaction

• Hence, logical undo v.s. physical redo

CSE 444 - Winter 2018 102

3. Undo Phase

Main principle: “logical” undo
• Start from end of Log, move backwards
• Read only affected log entries
• Undo actions are written in the Log as special

entries: CLR (Compensating Log Records)
• CLRs are redone, but never undone

CSE 444 - Winter 2018 103

3. Undo Phase: Details
• “Loser transactions” = uncommitted

transactions in Active Transactions Table

• ToUndo = set of lastLSN of loser transactions

CSE 444 - Winter 2018 104

3. Undo Phase: Details

While ToUndo not empty:
• Choose most recent (largest) LSN in ToUndo
• If LSN = regular record <T,P,u,v>:

– Undo v
– Write a CLR where CLR.undoNextLSN = LSN.prevLSN

• If LSN = CLR record:
– Don’t undo !

• if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log

CSE 444 - Winter 2018 105

106

3. Undo Phase: Details

[Figure 4 from Franklin97]

CSE 444 - Winter 2018

107

3. Undo Phase: Details
What happens if system crashes during

UNDO ?

CSE 444 - Winter 2018

108

3. Undo Phase: Details

What happens if system crashes during
UNDO ?

We do not UNDO again ! Instead, each CLR
is a REDO record: we simply redo the
undo

CSE 444 - Winter 2018

