#### CSE 444: Database Internals

Lecture 9

Query Plan Cost Estimation

CSE 444 - Winter 2018

Before We Go Into Query Plan Costs... How do Updates Work? (Insert/Delete)

CSE 444 - Winter 2018

#### **Example Using Delete**

#### delete from R where a=1;

 Query plan
 In SimpleDB, the Delete Operator calls BufferPool.deleteTuple()

 Delete
 Why not call HeapFile.deleteTuple() directly?

 Filter (σ a=1)
 Because there could also be indexes. Need some entity that will decide all the structures from where tuple needs to be deleted

 SeqScan
 BufferPool then calls HeapFile.deleteTuple()

 R
 BufferPool then calls HeapFile.deleteTuple()

#### Pushing Updates to Disk

- When inserting a tuple, HeapFile inserts it on a page but does not write the page to disk
- When deleting a tuple, HeapFile deletes tuple from a page but does not write the page to disk
- The buffer manager worries when to write pages to disk (and when to read them from disk)
- When need to add new page to file, HeapFile adds page to file on disk and then reads it through buffer manager

CSE 444 - Winter 2018

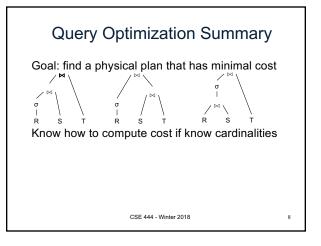
#### **Back to Query Optimization**

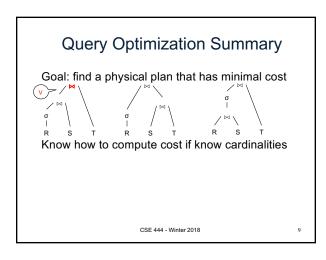
CSE 444 - Winter 2018

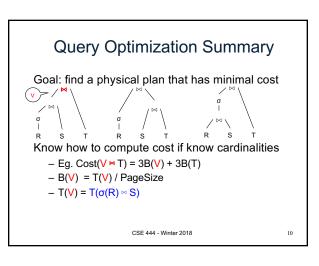
#### **Query Optimization Summary**

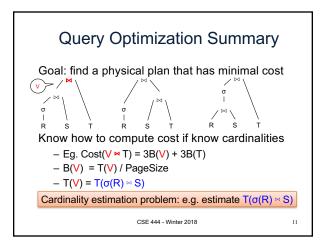
Goal: find a physical plan that has minimal cost




What is the cost of a plan?


For each operator, cost is function of CPU, IO, network bw  $Total\_Cost = CPUCost + w_{IO} IOCost + w_{BW} BWCost$ 


Cost of plan is total for all operators In this class, we look only at IO


CSE 444 - Winter 2018

## 









#### **Database Statistics**

- · Collect statistical summaries of stored data
- Estimate <u>size</u> (=cardinality) in a bottom-up fashion
  - This is the most difficult part, and still inadequate in today's query optimizers
- Estimate cost by using the estimated size
  - Hand-written formulas, similar to those we used for computing the cost of each physical operator

CSE 444 - Winter 2018

#### **Database Statistics**

- Number of tuples (cardinality) T(R)
- Indexes, number of keys in the index V(R,a)
- Number of physical pages B(R)
- Statistical information on attributes
  - Min value, Max value, V(R,a)
- Histograms
- · Collection approach: periodic, using sampling

CSE 444 - Winter 2018

#### Size Estimation Problem

Given T(R1), T(R2), ..., T(Rn)Estimate T(Q)

How can we do this? Note: doesn't have to be exact.

CSE 444 - Winter 2018

#### Size Estimation Problem

```
Q = SELECT list
FROM R1, ..., Rn
WHERE cond<sub>1</sub> AND cond<sub>2</sub> AND . . . AND cond<sub>k</sub>
```

Remark:  $T(Q) \le T(R1) \times T(R2) \times ... \times T(Rn)$ 

CSE 444 - Winter 2018

15

17

#### Size Estimation Problem

```
Q = SELECT list
FROM R1, ..., Rn
WHERE cond<sub>1</sub> AND cond<sub>2</sub> AND . . . AND cond<sub>k</sub>
```

Remark:  $T(Q) \le T(R1) \times T(R2) \times ... \times T(Rn)$ 

Key idea: each condition reduces the size of T(Q) by some factor, called selectivity factor

CSE 444 - Winter 2018

#### Selectivity Factor

- Each condition cond reduces the size by some factor called selectivity factor
- Assuming independence, multiply the selectivity factors

CSE 444 - Winter 2018

#### Example

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3Selectivity of S.C = T.C is 1/10Selectivity of R.A < 40 is 1/2

Q: What is the estimated size of the query output T(Q)?

CSE 444 - Winter 2018

#### Example

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3Selectivity of S.C = T.C is 1/10Selectivity of R.A < 40 is  $\frac{1}{2}$ 

 $\mathbb{Q}$ : What is the estimated size of the query output  $T(\mathbb{Q})$ ?

A:  $T(Q) = 30k * 200k * 10k * 1/3 * 1/10 * \frac{1}{2} = 10^{12}$ 

#### Selectivity Factors for Conditions

• A = c /\*  $\sigma_{A=c}(R)$  \*/
- Selectivity = 1/V(R,A)

CSE 444 - Winter 2018

#### Selectivity Factors for Conditions

- A = c /\*  $\sigma_{A=c}(R)$  \*/
   Selectivity = 1/V(R,A)
- A < c /\* \(\sigma\_{A < c}(R)^\*\) /
   <p>Selectivity = (c Low(R, A))/(High(R, A) Low(R, A))

CSE 444 - Winter 2018

21

#### Selectivity Factors for Conditions

- A = c /\*  $\sigma_{A=c}(R)$  \*/
   Selectivity = 1/V(R,A)
- A < c /\* σ<sub>A<c</sub>(R)\*/
   Selectivity = (c Low(R, A))/(High(R,A) Low(R,A))
- A = B /\* R ⋈<sub>A=B</sub> S \*/
  - Selectivity = 1 / max(V(R,A),V(S,A))
  - (will explain next)

CSE 444 - Winter 2018

22

#### **Assumptions**

- <u>Containment of values</u>: if V(R,A) <= V(S,B), then all values R.A occur in S.B
  - Note: this indeed holds when A is a foreign key in R, and B is a key in S
- <u>Preservation of values</u>: for any other attribute C, V(R ⋈<sub>A=B</sub> S, C) = V(R, C) (or V(S, C))
  - Note: we don't need this to estimate the size of the join, but we need it in estimating the next operator

CSE 444 - Winter 2018

#### Selectivity of $R \bowtie_{A=B} S$

Assume  $V(R,A) \le V(S,B)$ 

- A tuple t in R joins with T(S)/V(S,B) tuple(s) in S
- Hence  $T(R \bowtie_{A=B} S) = T(R) T(S) / V(S,B)$

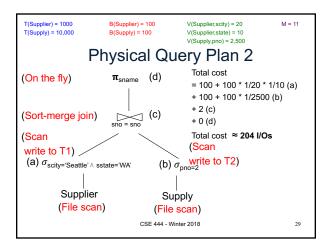
 $T(R \bowtie_{A=B} S) = T(R) T(S) / max(V(R,A),V(S,B))$ 

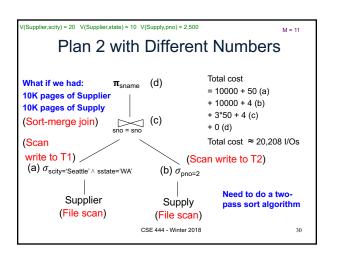
CSE 444 - Winter 2018

# Size Estimation for Join Example: • T(R) = 10000, T(S) = 20000 • V(R,A) = 100, V(S,B) = 200 • How large is R ⋈<sub>A=B</sub> S ? (In class...)

CSE 444 - Winter 2018

```
Complete Example
Supplier(sid, sname, scity, sstate)
                                         SELECT sname
Supply(sid, pno, quantity)
                                         FROM Supplier x, Supply y
                                         WHERE x.sid = y.sid
                                           and y.pno = 2
and x.scity = 'Seattle'
   · Some statistics
       - T(Supplier) = 1000 records
                                            and x.sstate = 'WA'
       - T(Supply) = 10,000 records
       - B(Supplier) = 100 pages
       - B(Supply) = 100 pages
       - V(Supplier,scity) = 20, V(Suppliers,state) = 10
       V(Supply,pno) = 2,500
       - Both relations are clustered
   • M = 11
                            CSE 444 - Winter 2018
```


#### Computing the Cost of a Plan


- · Estimate cardinality in a bottom-up fashion
  - Cardinality is the size of a relation (nb of tuples)
  - Compute size of all intermediate relations in plan
- · Estimate cost by using the estimated cardinalities

CSE 444 - Winter 2018

27

T(Supplier) = 1000 T(Supply) = 10,000 B(Supplier) = 100 B(Supply) = 100 V(Supplier,scity) = 20 V(Supplier, state) = 10 Physical Query Plan 1 (On the fly)  $\pi_{\text{sname}}$ Selection and project on-the-fly -> No additional cost. (On the fly)  $\sigma_{
m scity='Seattle' \, \land \, \, sstate='WA' \, \land \, \, pno=2}$ Total cost of plan is thus cost of join: sno = sno = B(Supplier)+B(Supplier)\*B(Supply) (Nested loop) = 100 + 100 \* 100 = 10,100 I/Os Supplier Supply (File scan) (File scan) CSE 444 - Winter 2018 28





```
T(Supplier) = 1000
T(Supply) = 10,000
                                                  V(Supplier,scity) = 20
                                                                               M = 11
                                                  V(Supplier,state) = 10
V(Supply,pno) = 2,500
                           B(Supply) = 100
                   Physical Query Plan 3
 (On the fly) (d) \pi_{\text{sname}}
 (On the fly)
                                                             + 4 (b)
         (c) \sigma_{\text{scity='Seattle'} \land \text{sstate='WA'}}
                                                             + 0 (c)
                                                             + 0 (d)
                                                            Total cost ≈ 5 I/Os
                          sno = sno (Index nested loop)
(Use hash index) 4 tuples
            (a) \sigma_{\text{pno=2}}
                                          Supplier
             Supply
      (Hash index on pno ) (Hash index on sno)
      Assume: clustered
                                     Clustering does not matter
```

#### Histograms

- · Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

CSE 444 - Winter 2018

#### Histograms

#### Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50 min(age) = 19, max(age) = 68

 $\sigma_{\text{age=48}}(\text{Empolyee}) = ? \quad \sigma_{\text{age>28 and age<35}}(\text{Empolyee}) = ?$ 

CSE 444 - Winter 2018

33

#### Histograms

#### Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{\text{age}=48}(\text{Empolyee}) = ? \quad \sigma_{\text{age}>28 \text{ and age}<35}(\text{Empolyee}) = ?$ 



Estimate = 25000 / 50 = 500 Estimate = 25000 \* 6 / 50 = 3000

CSE 444 - Winter 2018

34

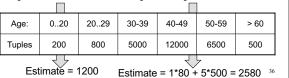
#### Histograms

#### Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{\text{age=48}}(\text{Empolyee}) = ? \quad \sigma_{\text{age>28 and age<35}}(\text{Empolyee}) = ?$ 

| Age:   | 020 | 2029 | 30-39 | 40-49 | 50-59 | > 60 |
|--------|-----|------|-------|-------|-------|------|
| Tuples | 200 | 800  | 5000  | 12000 | 6500  | 500  |


CSE 444 - Winter 2018 35

#### Histograms

#### Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{\text{age}=48}(\text{Empolyee}) = ? \quad \sigma_{\text{age}>28 \text{ and age}<35}(\text{Empolyee}) = ?$ 



#### Types of Histograms

• How should we determine the bucket boundaries in a histogram?

CSE 444 - Winter 2018

#### Types of Histograms

- How should we determine the bucket boundaries in a histogram ?
- · Eq-Width
- Eq-Depth
- · Compressed
- · V-Optimal histograms

CSE 444 - Winter 2018

nter 2018 33

### Employee(ssn, name, age) Histograms

#### Eq-width:

| Age:   | 020 | 2029 | 30-39 | 40-49 | 50-59 | > 60 |
|--------|-----|------|-------|-------|-------|------|
| Tuples | 200 | 800  | 5000  | 12000 | 6500  | 500  |

#### Eq-depth:

| Age:   | 033  | 3338 | 38-43 | 43-45 | 45-54 | > 54 |
|--------|------|------|-------|-------|-------|------|
| Tuples | 1800 | 2000 | 2100  | 2200  | 1900  | 1800 |

Compressed: store separately highly frequent values: (48,1900)

CSE 444 - Winter 2018

39

#### V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use V-optimal histograms or some variations

CSE 444 - Winter 2018

40

#### Difficult Questions on Histograms

- · Small number of buckets
  - Hundreds, or thousands, but not more
  - WHY ?
- Not updated during database update, but recomputed periodically
  - WHY ?
- Multidimensional histograms rarely used
  - WHY?

CSE 444 - Winter 2018

41

#### Difficult Questions on Histograms

- · Small number of buckets
  - Hundreds, or thousands, but not more
  - WHY? All histograms are kept in main memory during query optimization; plus need fast access
- Not updated during database update, but recomputed periodically
  - WHY? Histogram update creates a write conflict;
     would dramatically slow down transaction throughput
- · Multidimensional histograms rarely used
  - WHY? Too many possible multidimensional histograms, unclear which ones to choose
     CSF 444 - Winter 2018