
1

CSE 444: Database Internals

Lectures 5-6
Indexing

1CSE 444 - Winter 2018

Announcements
• HW1 due tonight by 11pm

– Turn in an electronic copy (word/pdf) by 11pm, or
– Turn in a hard copy after class or during office hour.

• Lab1 is due on Wednesday, 11pm
– Do not fall behind on labs! Labs build on each other

• 544M first reading due tonight… but flexible
• HW2 has been released

• Monday is a holiday
CSE 444 - Winter 2018 2

Basic Access Method: Heap File
API
• Create or destroy a file
• Insert a record
• Delete a record with a given rid (rid)

– rid: unique tuple identifier (more later)
• Get a record with a given rid

– Not necessary for sequential scan operator
– But used with indexes

• Scan all records in the file
CSE 444 - Winter 2018 3

But Often Also Want….

• Scan all records in the file that match a
predicate of the form attribute op value
– Example: Find all students with GPA > 3.5

• Critical to support such requests efficiently
– Why read all data form disk when we only need a

small fraction of that data?

• This lecture and next, we will learn how
CSE 444 - Winter 2018 4

CSE 444 - Winter 2018

Searching in a Heap File

30 18 …

70 21

20 20

40 19

80 19

60 18

10 21

50 22

File is not sorted on any attribute
Student(sid: int, age: int, …)

1 record

1 page

5 CSE 444 - Winter 2018

Heap File Search Example

• 10,000 students
• 10 student records per page
• Total number of pages: 1,000 pages
• Find student whose sid is 80

– Must read on average 500 pages
• Find all students older than 20

– Must read all 1,000 pages
• Can we do better?

6

2

CSE 444 - Winter 2018

Sequential File

10 21 …

20 20

30 18

40 19

50 22

60 18

70 21

80 19

File sorted on an attribute, usually on primary key
Student(sid: int, age: int, …)

7 CSE 444 - Winter 2018

Sequential File Example
• Total number of pages: 1,000 pages
• Find student whose sid is 80

– Could do binary search, read log2(1,000) ≈ 10 pages
• Find all students older than 20

– Must still read all 1,000 pages
• Can we do even better?

• Note: Sorted files are inefficient for inserts/deletes

8

CSE 444 - Winter 2018

Outline

• Index structures
• Hash-based indexes
• B+ trees

9

Today

Next time

Indexes
• Index: data structure that organizes data records on disk to

optimize selections on the search key fields for the index

• An index contains a collection of data entries, and supports
efficient retrieval of all data entries with a given search key value k

• Indexes are also access methods!
– So they provide the same API as we have seen for Heap Files
– And efficiently support scans over tuples matching predicate on search key

CSE 444 - Winter 2018
10

18

18

19

19

20

21

21

22

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

Index File
Search key: age Data File

(sequential file
sorted on sid)

CSE 444 - Winter 2018

Indexes

• Search key = can be any set of fields
– not the same as the primary key, nor a key

• Index = collection of data entries
• Data entry for key k can be:

– (k, RID)
– (k, list-of-RIDs)
– The actual record with key k

• In this case, the index is also a special file organization
• Called: “indexed file organization”

11

Different Types of Files
• For the data inside base relations:

– Heap file (tuples stored without any order)
– Sequential file (tuples sorted on some attribute(s))
– Indexed file (tuples organized following an index)

• Then we can have additional index files that
store (key,rid) pairs

• Index can also be a “covering index”
– Index contains (search key + other attributes, rid)
– Index suffices to answer some queries

CSE 444 - Winter 2018 12

3

CSE 444 - Winter 2018

Primary Index
• Primary index determines location of indexed records
• Dense index: sequence of (key,rid) pairs

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

1 data entry

1 page

Index File Data File (Sequential file)

13 CSE 444 - Winter 2018

Primary Index

• Sparse index

10

30

50

70

90

110

130

150

10

20

30

40

50

60

70

80

14

CSE 444 - Winter 2018

Primary Index
with Duplicate Keys

• Sparse index: pointer to lowest search key on
each page: Example search for 20

10

10

20

30

10

10

10

20

20

20

30

40

20 is
here...

...but
need to
search

here too

15 CSE 444 - Winter 2018

• Better: pointer to lowest new search key on
each page:

• Search for 15 ? 35 ?

Primary Index
with Duplicate Keys

10

20

30

40

50

60

70

80

10

10

10

20

30

30

40

50

20 is
here...

...ok to
search

from here

30

30

16

CSE 444 - Winter 2018

Primary Index
with Duplicate Keys

• Dense index:

10

20

30

40

50

60

70

80

10

10

10

20

20

20

30

40

17 CSE 444 - Winter 2018

Primary Index: Back to Example

• Let’s assume all pages of index fit in memory

• Find student whose sid is 80
– Index (dense or sparse) points directly to the page
– Only need to read 1 page from disk.

• Find all students older than 20
– Must still read all 1,000 pages.

• How can we make both queries fast?

18

4

CSE 444 - Winter 2018

Secondary Indexes
• Do not determine placement of records in data files
• Always dense (why ?)

18

18

19

19

20

21

21

22

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

19 CSE 444 - Winter 2018

Clustered vs.
Unclustered Index

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED
Clustered = records close in index are close in data

20

CSE 444 - Winter 2018

Clustered/Unclustered

• Primary index = clustered by definition
• Secondary indexes = usually unclustered

21 CSE 444 - Winter 2018

Secondary Indexes

• Applications
– Index unsorted files (heap files)
– When necessary to have multiple indexes
– Index files that hold data from two relations

• Called “clustered file”
• Notice the different use of the term “clustered”!

22

CSE 444 - Winter 2018

Index Classification Summary
• Primary/secondary

– Primary = determines the location of indexed records
– Secondary = cannot reorder data, does not determine data location

• Dense/sparse
– Dense = every key in the data appears in the index
– Sparse = the index contains only some keys

• Clustered/unclustered
– Clustered = records close in index are close in data
– Unclustered = records close in index may be far in data

• B+ tree / Hash table / …

23 CSE 444 - Winter 2018

Large Indexes

• What if index does not fit in memory?

• Would like to index the index itself
– Hash-based index
– Tree-based index

24

5

CSE 444 - Winter 2018

Hash-Based Index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H2age

h2(age) = 00

h2(age) = 01 H1

h1(sid) = 00

h1(sid) = 11

sid

Primary hash-based index
Secondary
hash-based index

Good for point queries but not range queries

25 CSE 444 - Winter 2018

Tree-Based Index

• How many index levels do we need?
• Can we create them automatically? Yes!
• Can do something even more powerful!

26

CSE 444 - Winter 2018

B+ Trees

• Search trees

• Idea in B Trees
– Make 1 node = 1 page (= 1 block)
– Keep tree balanced in height

• Idea in B+ Trees
– Make leaves into a linked list : facilitates range queries

27 CSE 444 - Winter 2018

B+ Trees

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

Note: can also store data records directly as data entries

28

CSE 444 - Winter 2018

• Parameter d = the degree
• Each node has d <= m <= 2d keys (except root)

• Each leaf has d <= m <= 2d keys:

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

Data records

Each node also
has m+1 pointers

29 CSE 444 - Winter 2018

B+ Tree Example
80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 < 80

20 ≤40 < 60

30

6

CSE 444 - Winter 2018

Searching a B+ Tree

• Exact key values:
– Start at the root
– Proceed down, to the leaf

• Range queries:
– Find lowest bound as above
– Then sequential traversal

Select name
From Student
Where age = 25

Select name
From Student
Where 20 <= age
and age <= 30

31 CSE 444 - Winter 2018

B+ Tree Design

• How large d ?
• Example:

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 bytes

• 2d x 4 + (2d+1) x 8 <= 4096
• d = 170

32

CSE 444 - Winter 2018

B+ Trees in Practice
• Typical order: 100. Typical fill-factor: 67%.

– average fanout = 133
• Typical capacities

– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 Mbytes

33 CSE 444 - Winter 2018

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
K3

parent

34

CSE 444 - Winter 2018

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

35 CSE 444 - Winter 2018

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

36

7

CSE 444 - Winter 2018

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

37 CSE 444 - Winter 2018

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

38

CSE 444 - Winter 2018

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

39 CSE 444 - Winter 2018

Insertion in a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

30 40 50

40

CSE 444 - Winter 2018

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

30 40 50

41 CSE 444 - Winter 2018

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

40 50

May change to
40, or not

42

8

CSE 444 - Winter 2018

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

40 50

43 CSE 444 - Winter 2018

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

40 50

44

CSE 444 - Winter 2018

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

40 50

45 CSE 444 - Winter 2018

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to merge nodes

50

50

46

CSE 444 - Winter 2018

Deletion from a B+ Tree
80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

Final tree

50

47 CSE 444 - Winter 2018

Summary on B+ Trees
• Default index structure on most DBMSs
• Very effective at answering ‘point’ queries:

productName = ‘gizmo’
• Effective for range queries:

50 < price AND price < 100
• Less effective for multirange:

50 < price < 100 AND 2 < quant < 20

48

9

Optional Material

• Let’s take a look at another example of an
index….

CSE 444 - Winter 2018 49 CSE 444 - Winter 2018

R6 R7R4 R5R3

R-Tree Example

R3 R4 R5 R6 R7

Search key values are bounding boxes

R3
R1

R4
R5

R6

R1 R2

R7

R2

Q

Q Q

Q

Designed for spatial data

For insertion: at each level, choose child whose bounding box
needs least enlargement (in terms of area)

50

