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CSE 444: Database Internals

Lectures 5-6
Indexing

1CSE 444 - Winter 2018

Announcements
• HW1 due tonight by 11pm

– Turn in an electronic copy (word/pdf) by 11pm, or
– Turn in a hard copy after class or during office hour.

• Lab1 is due on Wednesday, 11pm
– Do not fall behind on labs!  Labs build on each other

• 544M first reading due tonight… but flexible
• HW2 has been released

• Monday is a holiday
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Basic Access Method: Heap File
API
• Create or destroy a file
• Insert a record
• Delete a record with a given rid (rid)

– rid: unique tuple identifier (more later)
• Get a record with a given rid

– Not necessary for sequential scan operator
– But used with indexes 

• Scan all records in the file
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But Often Also Want….

• Scan all records in the file that match a 
predicate of the form attribute op value
– Example: Find all students with GPA > 3.5

• Critical to support such requests efficiently
– Why read all data form disk when we only need a 

small fraction of that data?

• This lecture and next, we will learn how 
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Searching in a Heap File

30 18 …

70 21

20 20

40 19

80 19

60 18

10 21

50 22

File is not sorted on any attribute
Student(sid: int, age: int, …)

1 record

1 page
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Heap File Search Example

• 10,000 students
• 10 student records per page
• Total number of pages: 1,000 pages
• Find student whose sid is 80

– Must read on average 500 pages
• Find all students older than 20

– Must read all 1,000 pages
• Can we do better? 
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Sequential File

10 21 …

20 20

30 18 

40 19

50 22

60 18

70 21

80 19

File sorted on an attribute, usually on primary key
Student(sid: int, age: int, …)
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Sequential File Example
• Total number of pages: 1,000 pages
• Find student whose sid is 80

– Could do binary search, read log2(1,000) ≈ 10 pages
• Find all students older than 20

– Must still read all 1,000 pages
• Can we do even better?

• Note: Sorted files are inefficient for inserts/deletes
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Outline

• Index structures
• Hash-based indexes
• B+ trees
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Today

Next time

Indexes
• Index: data structure that organizes data records on disk to 

optimize selections on the search key fields for the index

• An index contains a collection of data entries, and supports 
efficient retrieval of all data entries with a given search key value k

• Indexes are also access methods!
– So they provide the same API as we have seen for Heap Files
– And efficiently support scans over tuples matching predicate on search key
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20 20

30 18

40 19

50 22

60 18

70 21

80 19

Index File
Search key: age Data File

(sequential file 
sorted on sid)
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Indexes

• Search key = can be any set of fields
– not the same as the primary key, nor a key

• Index = collection of data entries
• Data entry for key k can be:

– (k, RID)
– (k, list-of-RIDs)
– The actual record with key k

• In this case, the index is also a special file organization
• Called: “indexed file organization”
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Different Types of Files
• For the data inside base relations:

– Heap file (tuples stored without any order)
– Sequential file (tuples sorted on some attribute(s))
– Indexed file (tuples organized following an index)

• Then we can have additional index files that 
store (key,rid) pairs

• Index can also be a “covering index”
– Index contains (search key + other attributes, rid)
– Index suffices to answer some queries
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Primary Index
• Primary index determines location of indexed records
• Dense index: sequence of (key,rid) pairs
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80

1 data entry

1 page

Index File Data File (Sequential file)
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Primary Index

• Sparse index
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Primary Index
with Duplicate Keys

• Sparse index: pointer to lowest search key on 
each page: Example search for 20
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10
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40

20 is 
here...

...but 
need to 
search 

here too
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• Better: pointer to lowest new search key on 
each page:

• Search for 15 ? 35 ?

Primary Index
with Duplicate Keys
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30
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Primary Index
with Duplicate Keys

• Dense index:
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Primary Index: Back to Example

• Let’s assume all pages of index fit in memory

• Find student whose sid is 80
– Index (dense or sparse) points directly to the page 
– Only need to read 1 page from disk.  

• Find all students older than 20
– Must still read all 1,000 pages. 

• How can we make both queries fast?
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Secondary Indexes
• Do not determine placement of records in data files
• Always dense (why ?)
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Clustered vs.
Unclustered Index

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED
Clustered = records close in index are close in data
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Clustered/Unclustered

• Primary index = clustered by definition
• Secondary indexes = usually unclustered
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Secondary Indexes

• Applications
– Index unsorted files (heap files)
– When necessary to have multiple indexes
– Index files that hold data from two relations

• Called “clustered file”
• Notice the different use of the term “clustered”!
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Index Classification Summary
• Primary/secondary

– Primary = determines the location of indexed records
– Secondary = cannot reorder data, does not determine data location

• Dense/sparse
– Dense = every key in the data appears in the index
– Sparse = the index contains only some keys

• Clustered/unclustered
– Clustered = records close in index are close in data
– Unclustered = records close in index may be far in data

• B+ tree / Hash table / …
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Large Indexes

• What if index does not fit in memory?

• Would like to index the index itself
– Hash-based index
– Tree-based index
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Hash-Based Index
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H2age

h2(age) = 00

h2(age) = 01 H1

h1(sid) = 00

h1(sid) = 11

sid

Primary hash-based index
Secondary 
hash-based index

Good for point queries but not range queries
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Tree-Based Index

• How many index levels do we need?
• Can we create them automatically? Yes!
• Can do something even more powerful!
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B+ Trees

• Search trees

• Idea in B Trees
– Make 1 node = 1 page (= 1 block)
– Keep tree balanced in height

• Idea in B+ Trees
– Make leaves into a linked list : facilitates range queries
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B+ Trees

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

Note: can also store data records directly as data entries
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• Parameter d = the degree
• Each node has d <= m <= 2d keys (except root)

• Each leaf has d <= m <= 2d keys:

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

Data records

Each node also
has m+1 pointers
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B+ Tree Example
80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 < 80

20 ≤40 < 60

30
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Searching a B+ Tree

• Exact key values:
– Start at the root
– Proceed down, to the leaf

• Range queries:
– Find lowest bound as above
– Then sequential traversal

Select name
From Student
Where age = 25

Select name
From Student
Where 20 <= age
and  age <= 30
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B+ Tree Design

• How large d ?
• Example:

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 bytes

• 2d x 4  + (2d+1) x 8  <=  4096
• d = 170

32
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B+ Trees in Practice
• Typical order: 100.  Typical fill-factor: 67%.

– average fanout = 133
• Typical capacities

– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 =     2,352,637 records

• Can often hold top levels in buffer pool
– Level 1 =           1 page  =     8 Kbytes
– Level 2 =      133 pages =     1 Mbyte
– Level 3 = 17,689 pages = 133 Mbytes       
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Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent   
K3    

parent
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Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19
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Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion
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Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25
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Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50
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Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50
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Insertion in a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

30 40 50

40
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Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

30 40 50
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Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

40 50

May change to 
40, or not
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Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

40 50
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Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

40 50

44

CSE 444 - Winter 2018

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

40 50
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Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to merge nodes

50

50
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Deletion from a B+ Tree
80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

Final tree

50
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Summary on B+ Trees
• Default index structure on most DBMSs
• Very effective at answering ‘point’ queries:

productName = ‘gizmo’
• Effective for range queries:

50 < price AND price < 100
• Less effective for multirange:

50 < price < 100  AND 2 < quant < 20
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Optional Material

• Let’s take a look at another example of an 
index….
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R6 R7R4 R5R3

R-Tree Example

R3 R4 R5 R6 R7

Search key values are bounding boxes

R3
R1

R4
R5

R6

R1 R2

R7

R2

Q

Q Q

Q

Designed for spatial data

For insertion: at each level, choose child whose bounding box 
needs least enlargement (in terms of area) 
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