CSE 444: Database Internals

Lectures 5-6
Indexing

CSE 444 - Winter 2018

Announcements
HW1 due tonight by 11pm

— Turn in an electronic copy (word/pdf) by 11pm, or
— Turn in a hard copy after class or during office hour.

Lab1 is due on Wednesday, 11pm

— Do not fall behind on labs! Labs build on each other

544 M first reading due tonight... but flexible
HW2 has been released

Monday is a holiday

CSE 444 - Winter 2018 2

Basic Access Method: Heap File

API

* Create or destroy a file

* Insert a record

* Delete a record with a given rid (rid)
— rid: unique tuple identifier (more later)

* Get a record with a given rid
— Not necessary for sequential scan operator
— But used with indexes

e Scan all records in the file
CSE 444 - Winter 2018

But Often Also Want....

 Scan all records in the file that match a
predicate of the form attribute op value

— Example: Find all students with GPA > 3.5

* Critical to support such requests efficiently

— Why read all data form disk when we only need a
small fraction of that data”

 This lecture and next, we will learn how

CSE 444 - Winter 2018

Searching in a Heap File

File is not sorted on any attribute
Student (s1d: int, age: 1int, ..)

30 | 18.. 1 record
70 21

20 20 1

40 | 19 J 1 page
80 19

60 18

10 21

50 22

CSE 444 - Winter 2018

Heap File Search Example

10,000 students
10 student records per page
Total number of pages: 1,000 pages

Find student whose sid is 80
— Must read on average 500 pages

Find all students older than 20
— Must read all 1,000 pages

Can we do better?

CSE 444 - Winter 2018

Sequential File

File sorted on an attribute, usually on primary key
Student (s1d: int, age: 1int, ..)

10 21 ...

20 20

30 18

40 19

50 22

60 18

70 21

80 19

CSE 444 - Winter 2018 7

Sequential File Example

Total number of pages: 1,000 pages

Find student whose sid is 80
— Could do binary search, read log,(1,000) = 10 pages

Find all students older than 20
— Must still read all 1,000 pages

Can we do even better?

Note: Sorted files are inefficient for inserts/deletes

CSE 444 - Winter 2018 8

Outline

 |ndex structures Tod
. oda
e Hash-based indexes Y
e B+ {frees } Next time

CSE 444 - Winter 2018

Indexes

* Index: data structure that organizes data records on disk to
optimize selections on the search key fields for the index

* An index contains a collection of data entries, and supports
efficient retrieval of all data entries with a given search key value k

* Indexes are also access methods!
— So they provide the same API as we have seen for Heap Files
— And efficiently support scans over tuples matching predicate on search key

18 10 | 21
|ndeX F||e 18 20 20
Search key: age 19) Data File
19 N 30 |18 (sequential file
0 | 19 sorted on sid)
20
2! 50 22
“ — 60 18
22 -
70 21
10
CSE 444 - Winter 2018 80 19

Indexes

« Search key = can be any set of fields
— not the same as the primary key, nor a key

 Index = collection of data entries

- Data entry for key k can be:
— (k, RID)
— (k, list-of-RIDs)
— The actual record with key k

* In this case, the index is also a special file organization
» Called: “indexed file organization”

CSE 444 - Winter 2018 11

Different Types of Files

* For the data inside base relations:
— Heap file (tuples stored without any order)
— Sequential file (tuples sorted on some attribute(s))
— Indexed file (tuples organized following an index)

* Then we can have additional index files that
store (key,rid) pairs

* |Index can also be a “covering index”
— Index contains (search key + other attributes, rid)
— Index suffices to answer some queries

CSE 444 - Winter 2018 12

Primary Index

 Primary index determines location of indexed records
» Dense index: sequence of (key,rid) pairs

Index File Data File (Sequential file)
r A) — — ™
1 dataentry —J o 10
20 20

30 —_

30

40 —]

40

50

60 50

1 page {

70
60

aram

il

80

70

80

CSE 444 - Winter 2018 13

Primary Index

o Sparse index

10

30

20

\30

40

50

60

70

80

CSE 444 - Winter 2018

14

Primary Index
with Duplicate Keys

« Sparse index: pointer to lowest search key on
each page: Example search for 20 ..but

need to
search

- 10 here too
10 — 10
30 10

20

20

20

30

40

CSE 444 - Winter 2018 15

Primary Index
with Duplicate Keys

» Better: pointer to lowest new search key on
each page:

10

10
20

10

20

” T ...ok to
search

50

WA

30 from here

30

30

e Searchfor15?7357? L

50

CSE 444 - Winter 2018 16

Primary Index
with Duplicate Keys

e Dense index:

10

10

20

20

20

30

40

CSE 444 - Winter 2018

Primary Index: Back to Example

Let's assume all pages of index fit in memory

Find student whose sid is 80
— Index (dense or sparse) points directly to the page
— Only need to read 1 page from disk.

Find all students older than 20
— Must still read all 1,000 pages.

How can we make both queries fast?

CSE 444 - Winter 2018 18

Secondary Indexes

* Do not determine placement of records in data files
« Always dense (why ?)

- 10 | 21

18 20 20

19 -

5 30 |18
40 19

20 pd

> 50 | 22

2; > 60 18
70 21
80 19

CSE 444 - Winter 2018

N\

/

N\

/A

\\

ANNNN

Clustered vs.
Unclustered Index

Data entries

(ndex File))V\m /X

Data entries ,/ \

e

S

Data Records

CLUSTERED

Clustered = records close in index are close in data

(Data file)’ /)(}/W\

Data Records

UNCLUSTERED

CSE 444 - Winter 2018 20

Clustered/Unclustered

* Primary index = clustered by definition
« Secondary indexes = usually unclustered

CSE 444 - Winter 2018

21

Secondary Indexes

* Applications
— Index unsorted files (heap files)
— When necessary to have multiple indexes

— Index files that hold data from two relations
« Called “clustered file”
* Notice the different use of the term “clustered”!

CSE 444 - Winter 2018

22

Index Classification Summary

Primary/secondary
— Primary = determines the location of indexed records
— Secondary = cannot reorder data, does not determine data location

Dense/sparse

— Dense = every key in the data appears in the index
— Sparse = the index contains only some keys

Clustered/unclustered
— Clustered = records close in index are close in data
— Unclustered = records close in index may be far in data

B+ tree / Hash table / ...

CSE 444 - Winter 2018

23

Large Indexes

* What if index does not fit in memory?

 \Would like to index the index itself
— Hash-based index
— Tree-based index

CSE 444 - Winter 2018

24

Hash-Based Index

Good for point queries but not range queries

h2(age) = 00
18 10 | 21 _
18 20 |20 h1 (Sld) =00
20)<
age 22 30 18
40 19
h2(age) =01 |~ 1 =~) sid
50 22
j; T~ 60 18
\X‘ h1(sid) = 11
70 21
80 19
Secondary
hash-based index Primary hash-based index

CSE 444 - Winter 2018 25

Tree-Based Index

 How many index levels do we need?
« Can we create them automatically? Yes!
« Can do something even more powerful!

CSE 444 - Winter 2018

26

B+ Trees

« Search trees

* |deain B Trees
— Make 1 node = 1 page (= 1 block)
— Keep tree balanced in height

* |deain B+ Trees
— Make leaves into a linked list : facilitates range queries

CSE 444 - Winter 2018 27

B+ Trees

J \ Data entries / \
Data entries L
/A \\Y N (ndex File))V\m /X
/// l l\\ \\% (Data file) /)(}/W\
Data Records Data Records
CLUSTERED UNCLUSTERED

Note: can also store data records directly as data entries

CSE 444 - Winter 2018 28

B+ Trees Basics

 Parameter d = the degree
 Each node has d <= m <= 2d keys (except root)

30

120

240

Each node also

/

AN

~

/

Keys k < 30

’

)Y

Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

. has m+1 pointers

 Each leaf has d <= m <= 2d keys:

Data records

40

50

60

/

AN

— Next leaf

/

40

’

50

N

60

CSE 444 - Winter 2018 29

B+ Tree Example

=2 Find the key 40
&0
R S
20 60 100 120 140
v \ AN
2040 <60

10 15 18 20 30 40 50 60 65 80 85 90
/ \ \\ / \\ \\ \\ /
10| |15| | 18| |20 30|40 | |50 || 60 || 65| 80| |85 | 90

CSE 444 - Winter 2018

30

Searching a B+ Tree

« Exact key values:
— Start at the root
— Proceed down, to the leaf

 Range queries:

— Find lowest bound as above
— Then sequential traversal

CSE 444 - Winter 2018

Select name
From Student
Where age = 25

Select name

From Student

Where 20 <= age
and age <= 30

31

B+ Tree Design

How large d ?

Example:

— Key size = 4 bytes

— Pointer size = 8 bytes

— Block size = 4096 bytes

2d x4 +(2d+1) x 8 <= 4096
d=170

CSE 444 - Winter 2018

32

« Typical order: 100. Typical fill-factor: 67%.

B+ Trees Iin Practice

— average fanout = 133

* Typica
— Heilg
— Heilg

capacities
nt 4: 1334 = 312,900,700 records

Nt 3: 1333 = 2,352,637 records

« Can often hold top levels in buffer pool

_eve
_eve

_eve

1= 1 page = 8 Kbytes
2= 133 pages= 1 Mbyte
3 =17,689 pages = 133 Mbytes

CSE 444 - Winter 2018

33

Insert (K, P)
« Find leaf where K belongs, insert
« If no overflow (2d keys or less), halt

« If overflow (2d+1 keys), split node, insert in parent:

parent

_

Insertion In a B+ Tree

K1 K2

K3

K4

K5

PO | Pl

P2

P3

P4

pS

parent
K1 K2 K4 K5
PO | PI P2 P3 | P4 PS5

« If leaf, also keep K3 in right node
* When root splits, new root has 1 key only

CSE 444 - Winter 2018

34

Insertion In a B+ Tree
Insert K=19

80

S

20 60 100 120 140
/ — . -
10 15 18 20 30 40 50 60 65 &0 &5 90
TR / A \ /|y 1T

ARWALRNA

10 15 18 20 30 || 40 50 || 60 || 65| 80| |85 | 90

CSE 444 - Winter 2018 35

Insertion In a B+ Tree

After insertion

80

I S R

20 60 100 120 140
/ — . -
10 15 18 19 20 30 40 50 60 65 &0 &5 90
TR I A \ /|y 1T

LAV LA

10 15 |1 18 || 19 || 20 || 30 || 40 50 || 60 || 65| 80| |85 | 90

CSE 444 - Winter 2018 36

Insertion In a B+ Tree
Now insert 25

80

S

20 60 100 120 140
/ — . -
10 15 18 19 20 30 40 50 60 65 &0 &5 90
TR I A \ /|y 1T

LAV LA

10 15 |1 18 || 19| 20 || 30 || 40 50 || 60 || 65| 80| |85 | 90

CSE 444 - Winter 2018 37

Insertion In a B+ Tree

After insertion

80

I S R

20 60 100 120 140

L \ N T ™~
10 15 18 19 20 25 30 40 50 60 65 80 85 90
TR I HENENEsdR /|y 1T

LAV LA

10 15118 (19| 20|[{25|| 30|40 || 50 || 60 || 65 || 80 85| | 90

CSE 444 - Winter 2018 38

Insertion In a B+ Tree

But now have to split !

80

S

20 60 100 120 140

L \ N T ™~
10 15 18 19 20 25 30 40 50 60 65 80 85 90
TR I HENENEsdR /|y 1T

LAV AN

10 1511819 20|| 25| 30|{40 || 50 || 60 || 65 || 80 85| | 90

CSE 444 - Winter 2018 39

Insertion In a B+ Tree
After the split

80

// \
20 30 60 100 120 140
- \ q ~L —
10 15 18 19 20 25 30 40 50 60 65 80 85 90
TR I Tt It /
\ \, \‘ v[v / \ v \
10| 15|18 [19| 20| 25 || 30 || 40 50 || 60 || 65|80 |85/ |90

CSE 444 - Winter 2018

40

Deletion from a B+ Tree

Delete 30

—

80

20

30

60

100 120

140

\\

10

25

40

60 65

80

85

90

/ \\ \\ \\ j 7 \T \\ /
10| |15/ 181 19 [20 || 25 || 30 || 40 50 || 60|65/ 80| |85/ |90

CSE 444 - Winter 2018

41

Deletion from a B+ Tree
After deleting 30

May change to
40, or not

—
20 30 60 100 120 140

e e

10 15 18 19 20 25 40 50 60 65 80 85 90

TR I Tt/ It /|y 1
\ \ \ \ j \ 4 / \ 4 \

10| |15 (| 18 | 19 | 20 || 25 40 \ 50 || 60|65/ 80| |85/ |90

CSE 444 - Winter 2018 42

—

Deletion from a B+ Tree
Now delete 25

80

20

30

60

=]

100

140

L \ N
10 15 18 19 20 25 40 50 60 65 80 85 90
/ \\ \\ \\ j]/ 1t \\ /
10| |15/ 181 19 | 20 || 25 40 \ 50 || 60|65/ 80| |85/ |90

CSE 444 - Winter 2018

43

Deletion from a B+ Tree
After deleting 25

Need to rebalance 80

Rotate // ~
20 30 60 100 120 140
AINININ I 1=

Y e

10 15 18 19 20 40 50 60 65 80 85 90

TR I Tt/ It /|y 1
\ \ \ j / \ 4 \

10| |15 (| 18 | 19 | 20 40 \ 50 || 60|65/ 80| |85/ |90

CSE 444 - Winter 2018 44

Deletion from a B+ Tree
Now delete 40

80

S

19 30 60 100 120 140

- \ \\\J ~ — ~

e e

10 15 18 19 20 40 50 60 65 80 85 90
TR v Tt/ It /|y 1
/| \ // / K

10| 15| 181 19 || 20 40 \50 60 || 65|/ 80| |85/ |90

CSE 444 - Winter 2018 45

Rotation not possible
Need to merge nodes

10

Deletion from a B+ Tree
After deleting 40

80

—

140

\\

80

85

90

e
\

10

15

18

65

80

85

90

CSE 444 - Winter 2018

46

Deletion from a B+ Tree

Final tree

80

I S R

19 60 100 120 140
/ \ T~ ~N ~—— ~
10 15 18 19 20 50 60 65 80 85 90

A 4

1N /|~ \ /|y 1

[V /) N

10 15 || 18 || 19 50 |60 || 65|/ 80| |85 | 90

CSE 444 - Winter 2018 47

Summary on B+ Trees

Default index structure on most DBMSs

Very effective at answering ‘point’ queries:
productName = ‘gizmo’

Effective for range queries:
50 < price AND price < 100

Less effective for multirange:
50 < price <100 AND 2 <quant <20

CSE 444 - Winter 2018

48

Optional Material

» Let's take a look at another example of an
iIndex....

CSE 444 - Winter 2018

49

R-Tree Example

Designed for spatial data |
Search key values are bounding boxes

R1 R2
/ \ R1
Q / \ Q RS
R5
R3 R4 R5 R6 R7 R4
/ \ \ \
Ta
R6
— R2
R3 R4 R5 R6 R7

For insertion: at each level, choose child whose bounding box
needs least enlargement (in terms of area)

CSE 444 - Winter 2018 50

