
Aries Example

A database contains two pages P1 and P2. P1 contains two elements A
and B. P2 contains two elements C and D.

Consider the following sequence of operations on the database:

• Transaction T1 writes A.

• Transaction T2 writes B.

• Transaction T2 writes C.

• The system flushes the log to disk and also flushes page P2 to disk.

• Transaction T1 writes D.

• Transaction T1 commits. The system writes a commit log record and
flushes the tail of the log to disk.

• Transaction T2 writes B.

• The system writes an END log record for T1.

• The system crashes.

1



1 State of the System Before Crash 2

1 State of the System Before Crash

The state of the system right before the crash is as follows:

Transaction Table:
transID lastLSN status

T2 6 Running (i.e. In Progress)

Transaction T1 gets removed from the table after we force-write (i.e.,
write and flush to disk) the commit log record. Right before being removed,
T1 had an entry in the table with lastLSN 5 and status committed.

Dirty Page Table:

pageID recLSN
P1 1
P2 4

Log:

LSN transID prevLSN type pageID log entry undoNextLSN

1 T1 - Update P1 Write A (A → A1) -
2 T2 - Update P1 Write B (B → B2) -
3 T2 2 Update P2 Write C (C → C3) -
4 T1 1 Update P2 Write D (D → D4) -
5 T1 4 Commit - - -
6 T2 3 Update P1 Write B (B2 → B6) -
7 T1 5 End - - -

Pages in memory:

• P1: A has value A1. B has value B6. The pageLSN is 6.

• P2: C has value C3. D has value D4. The pageLSN is 4.



2 Analysis Phase 3

2 Analysis Phase

When the system crashes and restarts, only the part of the log that was
flushed to disk remains. Everything else (transactions table, dirty pages
table, tail of the log) is gone. When the system restarts, it thus finds on disk
the log file up to LSN 5. The analysis phase starts at the beginning of the
log. It reads the log forward and rebuilds the transactions table and dirty
pages table. Their contents at the end of the phase are as shown below.

The rules of the analysis phase are as follows:

• END record removes transaction from the Transaction Table.

• Other records update lastLSN for corresponding transaction.

• Commit record changes status from Unknown to Committed.

• For redoable records, update the Dirty Page Table.

Transaction Table:
transID lastLSN status

T1 5 Committed
T2 3 Unknown

Dirty Page Table:
pageID recLSN

P1 1
P2 3



3 Redo Phase 4

3 Redo Phase

The REDO phase starts at the firstLSN, which is the smallest LSN in the
Dirty Page Table. In this example, it’s LSN 1.

For each redoable log record (update or CLR), the redo phase redoes the
change if necessary. To check if the system needs to reapply the change to
the page, it first checks if the page is in the Dirty Page Table. If it is in
the table, then it checks that the recLSN for the page is lower or equal to
the LSN of the change under consideration. If that is the case, then finally
the system reads the page from disk and checks if the pageLSN is strictly
smaller than the current LSN. If that is the case then it redoes the change.
Otherwise, it skips the change. In the example, we get the following:

• LSN 1: Redone.

• LSN 2: Redone

• LSN 3: No need to redo because PageLSN is 3 already.

• LSN 4: Redone

• LSN 5: Skipped

At this point, the system is back in the state at the time when the tail
of the log was last flushed to disk. The system can now write an END type
record for T1. This record will have LSN 6. T1 can then be removed from
the Transaction Table.



4 Undo Phase 5

4 Undo Phase

The system must undo T2. It’s the only transaction in the Transaction Table.
Its lastLSN is 3. So we start undo at this LSN 3. There is no need to write
an abort log record during undo. The system can write CLRs directly:

LSN transID prevLSN type pageID log entry undoNextLSN

1 T1 - Update P1 Write A (A → A1) -
2 T2 - Update P1 Write B (B → B2) -
3 T2 2 Update P2 Write C (C → C3) -
4 T1 1 Update P2 Write D (D → D4) -
5 T1 4 Commit - - -
6 T1 5 End - -
7 T2 - CLR - Unto T2 LSN 3 2
8 T2 - CLR - Unto T2 LSN 2 -
9 T2 8 End - -

Pages in memory:

• P1: A has value A1. B has its initial value. The pageLSN is 8.

• P2: C has its initial value C. D has value D4. The pageLSN is 7.



5 Second Crash 6

5 Second Crash

Let’s consider several scenarios for a second crash:

• System crashes without having written any of the new log entries or
pages to disk: In that case, the system will redo the analysis, redo, and
undo phases in exactly the same way as we did above.

• System flushes the log to disk, except for T2’s END log record: In that
case, at the end of the analysis phase, only T2 is in the Transaction
Table. We have the same Dirty Page Table. The redo phase is the same
as above until LSN 5. For LSN 6, the system does nothing. For LSN 7,
if we previously flushed the page to disk, then we skip it. Otherwise, we
reapply the change. Same for LSN 8. Finally, the undo phase will undo
T2. It finds a CLR for T2 without any undoNextLSN. So it writes an
END log record directly.

• System flushed the entire new log to disk: In that case, the transactions
table at the end of the analysis phase is empty and the system would
not undo anything.

• System crashes after flushing CLR with LSN 7. In that case, the undo
phase starts from that CLR when undoing T2. It directly follows the
undoNextLSN pointer. It adds the second CLR and END log records.



6 Checkpoint 7

6 Checkpoint

Aries uses fuzzy checkpoints, which proceed in three steps:

1. Write a begin checkpoint log record.

2. Construct an end checkpoint log record with current content of the
Transaction Table and Dirty Page Tables. Append the record to the
log. Flush tail of the log to disk.

3. Write the LSN of the begin checkpoint log record in a special place.

The analysis phase starts from the begin checkpoint and initializes the
Transaction Table and Dirty Page Table with the value in the end checkpoint
log record.

In our example, imagine that we checkpoint after flushing P2 to disk and
before w1[D]. Then after the analysis phase, the Dirty Pages table contains
P1 with recLSN 1 and P2 with recLSN 4. Redo still needs to start at LSN
1 but it skips over LSN 3 without loading P2 from disk to check that the
change need not be applied.

In another scenario, if the system also flushed P1 to disk before the check-
point, the Dirty Page Table after analysis would only contain P2 with LSN
4. Redo would start at LSN 4.



7 Transaction Aborts 8

7 Transaction Aborts

Finally, consider the scenario where instead of crashing T2 aborts.

Transaction Table: Empty since both transactions ended.

Dirty Page Table:

pageID recLSN
P1 1
P2 4

Log:

LSN transID prevLSN type pageID log entry undoNextLSN

1 T1 - Update P1 Write A (A → A1) -
2 T2 - Update P1 Write B (B → B2) -
3 T2 2 Update P2 Write C (C → C3) -
4 T1 1 Update P2 Write D (D → D4) -
5 T1 4 Commit - - -
6 T2 3 Update P1 Write B (B2 → B6) -
7 T1 5 End - - -
8 T2 6 Abort - - -
9 T2 - CLR - Undo T2 LSN6 3
10 T2 - CLR - Undo T2 LSN3 2
11 T2 - CLR - Undo T2 LSN2 -
12 T2 11 End - - -

Pages in memory:

• P1: A has value A1. B has its initial value. The pageLSN is 11.

• P2: C has its initial value. D has value D4. The pageLSN is 10.


