CSE 444: Database Internals

Section 3:
Operator Algorithms

Today

- Discuss algorithms for aggregate operators
- Questions for Homework 2

Notations

- $B(R)=\#$ of blocks (i.e. pages) for relation R
- $T(R)=\#$ of tuples in relation R
- $\mathrm{V}(\mathrm{R}, \mathrm{a})=$ \# of distinct values of attribute a
- Memory M

Algorithms for Group By and Aggregate Operators

- Modified Tweet Example:

Tweet(tid, uid, tlen) tlen = tweet length

SELECT uid, MIN(tlen)
FROM Tweet
GROUP BY uid

One pass, hash-based grouping

$$
\mathrm{M}=3
$$

One pass, hash-based grouping

One pass, hash-based grouping

$$
M=3
$$

Discussion

Cost:

- Clustered?
- Unclustered?

Which operator method does the grouping?
open(), next(), or close()?

What to do for AVG(tlen)?

Discussion

Cost:

- Clustered?
$-B(R)$: assuming $M-1$ pages can hold all groups - tuples for groups can be shorter or larger than original tuples
- Unclustered?
$-T(R)$: since we would need to fetch each row

Which method does the grouping:
open(), next(), or close()?

- Cannot return anything until the entire data is read. This can be done in the open() or next() call

What to do for AVG(tlen)?

- Keep both SUM(tlen) and COUNT(*) for each group in memory

Two pass, hash-based grouping

Showing

tid, uid, tlen

$$
M=3
$$

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

Two pass, hash-based grouping

Showing tid, uid, tlen

No aggregation is performed in the first pass
$M=3$

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

$$
5,1,7
$$

$\mathrm{H}=$ uid $\% 2$
4, 2, 10

$$
\begin{array}{l|l}
\hline 5,1,7 & 4,2,10 \\
\hline
\end{array}
$$

Two pass, hash-based grouping

Showing tid, uid, tlen

No aggregation is performed in the first pass
$M=3$

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$

$7,3,1$	$2,2,5$

$6,4,9$	$8,4,10$

$$
\begin{array}{|l|l|}
\hline 1,3,3 & 3,5,5 \quad \text { Flush! } \\
\hline
\end{array}
$$

Two pass, hash-based grouping

Showing

 tid, uid, tlenFinal buffer and disk after pass 1
$M=3$

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

$5,1,7$	$1,3,3$			
$4,2,10$	$2,2,5$		$3,5,5$	$7,3,1$
:---	:---		$6,4,9$	$8,4,10$
:---	:---			

Two pass, hash-based grouping

Showing tid, uid, tlen

Second pass: compute aggregate in each bucket Need to keep only one record per group
$M=3$

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

$$
\begin{array}{|c|c|}
\hline 5,1,7 & 1,3,3 \\
\hline
\end{array}
$$

$5,1,7$	$1,3,3$			
$4,2,10$	$2,2,5$		$3,5,5$	$7,3,1$
:---	:---	:---		

Two pass, hash-based grouping

Showing

 tid, uid, tlenSecond pass: compute aggregate in each bucket Need to keep only one record per group
$M=3$
Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

$$
\begin{array}{l|l}
\hline 3,5,5 & 7,3,1 \\
\hline
\end{array}
$$

| $5,1,7$ | $1,3,3$ |
| :--- | :--- | | $3,2,10$ | $2,2,5$ | $7,3,1$ |
| :--- | :--- | :--- | | $3,4,9$ | $8,4,10$ |
| :--- | :--- |

Discussion

Cost?

- 3B(R)

Assumptions?

- Need to hold all distinct values in the same bucket in M-1
- Assuming uniformity, $B(R)<=M^{2}$ is safe to assume
- i.e. $B(R) / M<=M$
- Note: can handle cases when R has large partitions with small number of groupings

Two pass, sort-merge-based grouping

Showing

$$
M=3
$$

tid, uid, tlen
Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

Two pass, sort-merge-based grouping

Showing tid, uid, tlen

Step 1: Divide R into M partitions sort each partition in memory (on group by attr = uid)

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

$$
\begin{array}{l|l}
\hline 5,1,7 & 4,2,10 \\
\hline
\end{array}
$$

$$
\begin{array}{l|l}
\hline 2,2,5 & 1,3,3 \\
\hline
\end{array}
$$

$2,2,5$	$1,3,3$
$7,3,1$	$3,5,5$

$$
\begin{array}{l|l}
\hline 7,3,1 & 3,5,5 \\
\hline
\end{array}
$$

$5,1,7$	$4,2,10$

$2,2,5$	$1,3,3$

$$
\begin{array}{l|l|}
\hline 7,3,1 & 3,5,5 \\
\hline
\end{array}
$$

Two pass, sort-merge-based grouping

Showing tid, uid, tlen

Step 1: Divide R into M partitions sort each partition in memory (on group by attr = uid)
Write to disk

Tweet

$5,1,7$	$4,2,10$			
$1,3,3$	$3,5,5$			
$7,3,1$	$2,2,5$			
$6,4,9$	$8,4,10$	\quad	$6,4,9$	$8,4,10$
:---	:---			

$$
\begin{array}{|c|c|}
\hline 5,1,7 & 4,2,10 \\
\hline \\
\hline 6,4,9 & 8,4,10 \\
\hline
\end{array}
$$

$$
\begin{array}{l|l}
\hline 2,2,5 & 1,3,3 \\
\hline
\end{array}
$$

$$
\begin{array}{l|l}
\hline 7,3,1 & 3,5,5 \\
\hline
\end{array}
$$

Two pass, sort-merge-based grouping

Showing tid, uid, tlen

Step 2:

- Load first blocks from all runs
- Find minimum of each key
- Repeatedly find the least value of the sort key: next group

Tweet

$5,1,7$	$4,2,10$

$1,3,3$	$3,5,5$

$7,3,1$	$2,2,5$

$6,4,9$	$8,4,10$

Not showing the outputs in output buffer

\[

\]

$$
2,2,5
$$

$$
1,3,3
$$

$$
7,3,1
$$

$$
3,5,5
$$

Two pass, sort-merge-based grouping

Showing tid, uid, tlen

Step 2: Find minimum of each key
Repeatedly find the least value of the sort key:
$M=3$

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

\square
Not showing the outputs in output buffer

\[

\]

$$
2,2,5
$$

$$
1,3,3
$$

$$
\begin{array}{l|l}
\hline 7,3,1 & 3,5,5 \\
\hline
\end{array}
$$

Two pass, sort-merge-based grouping

Showing tid, uid, tlen

Step 2: Find minimum of each key
Repeatedly find the least value of the sort key:
$M=3$

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

5, 1, 7	4, 2, 10	$\begin{aligned} & \text { (uid, } \min (\text { tlen }) \text {) } \\ & (1,7) \\ & (2,10) \end{aligned}$
A		
6, 4 9	8, 4, 10	
	-	
Not showing the outputs in output buffer		

| $5,1,7$ | $4,2,10$ |
| :---: | :---: | | $6,4,9$ | $8,4,10$ |
| :---: | :---: |

$2,2,5$	$1,3,3$
$7,3,1$	$3,5,5$

$$
\begin{array}{l|l}
6,4,9 & 8,4,10 \\
\hline
\end{array}
$$

Two pass, sort-merge-based grouping

Showing lid, cid, then

Step 2: Find minimum of each key
Repeatedly find the least value of the sort key:
$M=3$

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

| $5,1,7$ | $4,2,10$ |
| :---: | :---: | | $6,4,9$ | $8,4,10$ |
| :---: | :---: |

$$
\begin{array}{l|l|}
\hline 2,2,5 & 1,3,3 \\
\hline 7,3,1 & 3,5,5 \\
\hline
\end{array}
$$

$$
\begin{array}{l|l}
\hline 6,4,9 & 8,4,10 \\
\hline
\end{array}
$$

Two pass, sort-merge-based grouping

Showing tid, uid, tlen

Step 2: Find minimum of each key
Repeatedly find the least value of the sort key:
$M=3$

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

2, 2, 5	1, 3, 3	$\begin{aligned} & \text { (uid, } \min (\text { tlen }) \text {) } \\ & (1,7) \end{aligned}$
,		
6, 4, $9 \times 8,4,10$		$(2,5)$

$5,1,7$	$4,2,10$
$6,4,9$	$8,4,10$

$$
\begin{array}{|c|c|c|}
\hline 2,2,5 & 1,3,3,3,1 & 3,5,5 \\
\hline
\end{array}
$$

Two pass, sort-merge-based grouping

Showing tid, uid, tlen

Step 2: Find minimum of each key
Repeatedly find the least value of the sort key:
$M=3$ next group

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

Not showing the outputs in output buffer

$$
\begin{array}{|l|l|}
\hline 5,1,7 & 4,2,10 \\
\hline
\end{array} \begin{array}{|c|c|}
\hline 6,4,9 & 8,4,10 \\
\hline
\end{array}
$$

$$
1,3,3
$$

$$
7,3,1
$$

$$
3,5,5
$$

Two pass, sort-merge-based grouping

Showing tid, uid, tlen

Step 2: Find minimum of each key
Repeatedly find the least value of the sort key:
$M=3$ next group

Tweet

$5,1,7$	$4,2,10$
$1,3,3$	$3,5,5$
$7,3,1$	$2,2,5$
$6,4,9$	$8,4,10$

Not showing the outputs in output buffer

| $5,1,7$ | $4,2,10$ |
| :--- | :--- | :--- | | $2,2,5$ |
| :---: | $\mathbf{1 , 3 , 3}$| $7,3,1$ | $3,5,5$ |
| :---: | :---: |

$$
\begin{array}{l|ll}
\hline 6,4,9 & 8,4,10 \\
\hline
\end{array}
$$

Discussion

Cost?
 - 3B(R)

Assumptions?

- Need to hold one block from each run in M pages
$-B(R)<=M^{2}$

One pass vs. Two pass

- One pass:
- smaller disk I/O cost
- e.g. $B(R)$ for one-pass hash-based aggregation
- Handles smaller relations
- e.g. $B(R)<=M$
- Two/Multi pass:
- Larger disk I/O cost
- e.g. 3B(R) for two-pass hash-based aggregation
- Can handle larger relations
- e.g. $B(R)<=M^{2}$

Review for Joins

- Two-pass Hash-based Join
- Cost: 3B(R) + 3B(S)
- Assumption: $\operatorname{Min}(B(R), B(S))<=M^{2}$
- Two-pass Sort-merge-based Join
- Implementation:
- Cost: 5B(R) + 5B(S)
- For R, S: sort runs/sublists (2 I/O, read + write)
- Merge sublists to have entire R, S sorted individually (2 I/O, read + write)
- Join by combining R and S (only read, write not counted - 1 I/O)
- If \#runs <= M-1, then cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$

Homework 2

- Problem 1
- B+ Trees (inserting/deleting/lookups)
- Problem 2
- Operator Algorithms
- Problem 3
- Multi-Pass Algorithms

