CSE 444: Database Internals

Section 2: Indexing



Reminders

Lab 1 Done!

Lab 2 will be released today!
— Will need to run ‘git pull upstream lab2" to get new files

Homework 2 due next Friday

Today, we will go through indexing examples
together



Indexing

* Another file storing index attribute(s) and
pointers (aka RecordID) or actual records

— Typically smaller than the data file

* Motivation
— Fast access to data (less disk |/0O)



Motivating Scenario

Consider the following database schema:

Field Name Data Type Size on disk
Id (primary key) Unsigned INT 4 bytes
firstName Char(50) 50 bytes
lastName Char(50) 50 bytes
emailAddress  Char(100) 100 bytes



Motivating Scenario

Total records in the database = 5,000,000
Length of each record = 4+50+50+100 = 204 bytes

Let the default block size be 1,024 bytes

How many disk blocks are needed to store this

data set?

We will have 1024/204 = 5 records per disk block
No. of blocks needed for the entire table = 5000000/5 = 1,000,000 blocks



Motivating Scenario

Suppose you want to find the person with a
particular id (say 5000)

Assume data file sorted on primary key

What is the best way to do so?



Motivating Scenario

Linear Search

No. of block accesses = 1000000/2
= 500,000 on avg

Binary Search

No. of block accesses = log, 1000000 = 19.93 = 20



Motivating Scenario

Now, suppose you want to find the person having
firstName = ‘John’

Here, the column isn’t sorted and does not hold an
unique value.

What is the best way to do search for the records?



Motivating Scenario

Solution: Create an index on the firstName
column

The schema for an index on firstName is:
Field Name Data Type Size on disk
firstName Char(50) 50 bytes
(record pointer) Special 4 bytes



Motivating Scenario

Total records in the database = 5,000,000
Length of each index record = 4+50 = 54 bytes

Let the default block size be 1,024 bytes

Therefore,

We will have 1024/54 = 18 records per disk block
Also, No. of blocks needed for the entire table =
5000000/18 = 277,778 blocks



Motivating Scenario

Now, a binary search on the index will result in
log, 277778 = 18.08 = 19 block accesses.

Also, to find the address of the actual record,
which requires a further block access to read,
bringing the total to 19 + 1 = 20 block accesses.

Thus, indexing results in a much better
performance as compared to searching the entire
database.



Indexes

Useful for search query / range query / joins

Revisit Tweet Example:

Tweets(tid, user, time, content)



Tweet Relation in a Sequential File

File is sorted on “tid”

——— 1 record

}7 1 page

tid user time content
10 1 05:03:00 [ “.....
20 2 12:05:07 | “.....
30 2 18:12:.00 | “.....
40 3 00:16:13 | “.....
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
70 2 12:08:34 | “.....
80 4 11:08:09 | “.....




Index Classification

Primary/secondary

— Primary = determines the location of indexed records
— Secondary = cannot reorder data, does not determine data location

Dense/sparse
— Dense = every key in the data appears in the index
— Sparse = the index contains only some keys

Clustered/unclustered

— Clustered = records close in index are close in data
— Unclustered = records close in index may be far in data

CSE 444 - Spring 2014

14



Ex1. Draw a secondary dense index on

“User”

——— 1 record

}7 1 page

tid user time content
10 2 05:03:00 [ “.....
20 1 12:05:07 | “.....
30 2 18:12:.00 | “.....
40 3 00:16:13 | “.....
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
70 2 12:08:34 | “.....
80 4 11:08:09 | “.....




Ex1. Secondary Dense Index (user)

——— 1 record

\

}7 1 page

» S w N

\><

tid user time content
10 2 05:03:00 [ “.....
20 1 12:05:07 | “.....
30 2 18:12:.00 | “.....
40 3 00:16:13 | “.....
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
2 12:08:34 | “.....
4 11:08:09 | “.....

* Dense: an “index key” (not database key) for every database record
e Secondary: cannot reorder data, does not determine data location
e Also, Unclustered: records close in index may be far in data



Ex2. Draw a primary dense index on
lltidll

——— 1 record

}7 1 page

tid user time content
10 1 05:03:00 [ “.....
20 2 12:05:07 | “.....
30 2 18:12:.00 | “.....
40 3 00:16:13 | “.....
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
70 2 12:08:34 | “.....
80 4 11:08:09 | “.....




Ex2. Primary Dense Index (tid)

10

20

30

40

[1]

50

60

70

80

javan

s:;
\
\
\

——— 1 record

}7 1 page

tid user time content
10 2 05:03:00 [ “.....
20 1 12:05:07 | “.....
30 2 18:12:.00 | “.....
40 3 00:16:13 | “.....
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
70 2 12:08:34 | “.....
80 4 11:08:09 | “.....

* Dense: an “index key” for every database record
— (In this case) every “database key” appears as an “index key”

* Primary: determines the location of indexed records

* Also, Clustered: records close in index are close in data



Improve from Primary Clustered Index?

Clustered Index can be made Sparse

(normally one key per page)



Ex3. Draw a primary sparse index on
Iltidll

——— 1 record

}7 1 page

tid user time content
10 2 05:03:00 [ “.....
20 1 12:05:07 | “.....
30 2 18:12:.00 | “.....
40 3 00:16:13 | “.....
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
70 2 12:08:34 | “.....
80 4 11:08:09 | “.....




Ex3. Primary Sparse Index (tid)

10

[
—>

1 record

30

50
70 \

tid user time content
10 2 05:03:00 [ “.....
20 1 12:05:07 | “.....
30 2 18:12:.00 | “.....
40 3 00:16:13 | “.....
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
70 2 12:08:34 | “.....
80 4 11:08:09 | “.....

Only one index file page instead of two

}7 1 page



B+ trees



Insertions and Deletion in a B+ tree

* Note: the <, <=assumptions in this class:

40

40 50 60
Internal node:
| vy * Left pointer from
— I Vool key = k: to keys <k
30 40 55 | [ 70 * Right pointer: to
keys >=k
0 0 1% Leaf node:
| | \ —» * Left pointer from key = k: to the block
! o containing data with value k in that attribute
50 50 * Last remaining pointer on right: To the next

leaf on right



Insertions and Deletion in a B+ tree

* Note: when a leaf is split, the middle key is copied to the new
leaf on right (and also inserted in parent)
— Since we assumed the right pointer from key = k points to keys >=k

 Note: when an internal node is split, we do not need to copy
the middle key to the right, only insert it in parent

— Use the left pointer of the new right internal node

 Some examples....



Problem 1:
B+ tree insertion and deletion

e Start with an empty B+ tree, d=2
* [nsertl/, 3, 25,95,8,57/, 69
* Then insert 29, 91, 78, 80, 92, 99, 97



Insertions




Insertions




Insertions

%
y

[el7 =1




Insertions




Insertions

=11\ 69
L
T EEE
/L £es
U
el 1|




Insertions




Insertions

el

/

jalel ||

N———

E‘Gq“ | (efalas] )




Insertions

5D

Alerl =8|

1Elel ] (e=bs AL\ \erlel || Refela s




F ez

/

Insertions

A L @l

\J \

4



Insertions

\= |52 W\>@
/ \J \

REL] | |nlsl® \ @] \@_\__l_\

— T T




Insertions

@ peed. do gpie oct!
[2¢] |
T

e |

VAN
G

Q/o‘x /’\(g%w‘?%
%Q\;;W %N " Og\é?
DN Sl @z% M

alas| |

el | egell]




Problem 1:
B+ tree insertion and deletion

* Now delete all nodes in the following order:
57, 3,99, 29, 17, 25, 95, 8, 78, 92, 69, 97, 91



Deletions




Deletions




@ Deletions (continued for 3)




Deletions




2
.

EEasl—

Telrl ||

Deletions

25]et

(Einm

S ek T

) e

[




Deletions

?g - % > (98]
/ (hz [
hléq
AN (VWA
d@ldﬁ Qevé@/m y‘(g 59

@aﬂﬂ\* |




