

- What happens when a secondary crashes? – Nothing happens
 - When secondary recovers, it catches up
- What happens when the master/primary fails?

CSE 444 - Winter 2017

- Blocking would hurt availability
- Must chose a new primary: run election

- Secondaries think that primary failed
- Secondaries elect a new primary
- But primary can still be running
- Now have two primaries!

Majority Consensus

• To avoid problem, only majority partition can continue processing at any time

- In general,
 - Whenever a replica fails or recovers...
 - a set of communicating replicas must determine...
 - whether they have a majority before they can continue

CSE 444 - Winter 2017

CSE 444 - Winter 2017

• With n copies

- Exclusive lock on x copies is global exclusive lock
- Shared lock on s copies is global shared lock
- Must have: 2x > n and s + x > n
- Majority locking
 - -s = x = [(n+1)/2]
 - No need to run any reconfiguration algorithms
- Read-locks-one, write-locks-all
 - s=1 and x = n, high read performance
 - Need to make sure algo runs on quorum of computers

CSE 444 - Winter 2017

10

12

Synchronous Replication Properties

- Favours consistency over availability
- Only majority partition can process requests
- There appears to be a single copy of the db
- · High runtime overhead
 - Must lock and update at least majority of replicas
 - Two-phase commit
 - Runs at pace of slowest replica in quorum
 - So overall system is now slower
 - Higher deadlock rate (transactions take longer)

CSE 444 - Winter 2017

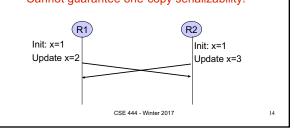
11

Asynchronous Replication

- Also called lazy replication
- Also called optimistic replication
- · Main goals: availability and performance
- · Approach
 - One replica updated by original transaction
 - Updates propagate asynchronously to other replicas

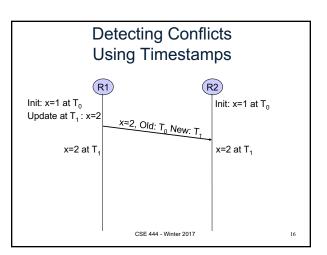
CSE 444 - Winter 2017

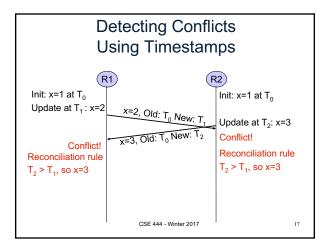
- One master holds primary copy
 - Transactions update primary copy
 - Master asynchronously propagates updates to replicas, which process them in same order (e.g. through log shipping)
 - Ensures single-copy serializability
- What happens when master/primary fails?
 - Can lose most recent transactions when primary fails!
 After electing a new primary, secondaries must agree who is most up-to-date


CSE 444 - Winter 2017


13

15




Cannot guarantee one-copy serializability!

- · Different reconciliation techniques are possible
 - Manual
 - Most recent timestamp wins
 - Site A wins over site B
 - User-defined rules, etc. CSE 444 - Winter 2017

Two-Tier Replication

- Benefits of lazy master and lazy group
- · Each object has a master with primary copy
- When disconnected from master
 - Secondary can only run tentative transactions
- When reconnects to master
 - Master reprocesses all tentative transactions
 - Checks an acceptance criterion
 - If passes, we now have final commit order
 - Secondary undoes tentative and redoes committed

19

CSE 444 - Winter 2017

Conclusion

- Replication is a very important problem
 - Fault-tolerance (various forms of replication)
 - Caching (lazy master)
 - Warehousing (lazy master)
 - Mobility (two-tier techniques)
- Replication is complex, but basic techniques and trade-offs are very well known
 - Synchronous or asynchronous replication
 - Master or quorum

CSE 444 - Winter 2017

20