CSE 444: Database Internals

Lecture 24
Two-Phase Commit (2PC)

CSE 444 - Winter 2017

References

 Ullman book: Section 20.5

« Ramakrishnan book: Chapter 22

CSE 444 - Winter 2017

We are Learning about
Scaling DBMSs

» Scaling the execution of a query
N parallel DBMS
N MapReduce

p Spark

@ ¢ Scaling transactions
— Distributed transactions
— Replication
— Scaling with NoSQL and NewSQL

CSE 444 - Winter 2017

Run many

transactions in a Our Goal
large cluster S
| —=
- {|
1 [I | 1|
| (L1 :
[=) | — I
Ba, —— |t
I |1& I I [] hitp
I B —— I Connection multiplex
(e.g., JDBC o
[I [
— |
P
1 (O /] 1|
e =
I I

Web Server Farm 017

Browser

Transaction Scaling Challenges

 Distribution
— There is a limit on transactions/sec on one server
— Need to partition the database across multiple servers
— If a transaction touches one machine, life is good!
— |If a transaction touches multiple machines, ACID becomes
extremely expensive! Need two-phase commit
* Replication
— Replication can help to increase throughput and lower latency
— Create multiple copies of each database partition
— Spread queries across these replicas
— Easy for reads but writes, once again, become expensive!

CSE 444 - Winter 2017

Distributed Transactions

« Concurrency control

 Failure recovery

— Transaction must be committed at all sites or at none
of the sites!
« No matter what failures occur and when they occur

— Two-phase commit protocol (2PC)

CSE 444 - Winter 2017 6

Distributed Concurrency Control

In theory, different techniques are possible
— Pessimistic, optimistic, locking, timestamps
In practice, distributed two-phase locking

— Simultaneously hold locks at all sites involved

Deadlock detection techniques

— Global wait-for graph (not very practical)

— Timeouts

If deadlock: abort least costly local transaction

CSE 444 - Winter 2017

Two-Phase Commit: Motivation

Coordinator

2) COMMIT Subordinate 1

1) User decides
to commit

3) COMMIT

4) Coordinator

crashes
What do we do now? Subordinate 2
Q But | already aborted!

Subordinate 3

CSE 444 - Winter 2017

Two-Phase Commit Protocol

« One coordinator and many subordinates

— Phase 1: prepare
 All subordinates must flush tail of write-ahead log to disk before ack
« Must ensure that if coordinator decides to commit, they can commit!

— Phase 2: commit or abort
— Log records for 2PC include transaction and coordinator ids
— Coordinator also logs ids of all subordinates

* Principle
— Whenever a process makes a decision: vote yes/no or commit/abort
— Or whenever a subordinate wants to respond to a message: ack
— First force-write a log record (to make sure it survives a failure)
— Only then send message about decision

CSE 444 - Winter 2017 9

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decide N —
4) YES\— O

to commit
3) Force-write: prepare
2) PREPARE

4) YES
4) YES %
) PREPARE Subordinate 2

3) Force-write: prepare

Subordinate 3
3) Force-write: prepare
CSE 444 - Winter 2017 10

2PC: Phase 2, Commit

5) Write: end, then forget transaction

oordinator 2) COMMIT Subordinate 1
1) Force-write: \\ ,()
commit ' 4) ACK
Transaction is 2) COMMIT 3) Force-_/vrite: commit
now committed! 5) Commit transaction
4) ACK and “forget” it

4) ACK %
D) COMMIT Subordinate 2

3) Force-write: commit
/ 5) Commit transaction

Subordinate 3 and “forget” it
3) Force-write: commit

5) Commit transaction and “forget” it 1
CSE 444 - Winter 2017

2PC with Abort

Coordinator
2) PREPARE Subordinate 1

1) User decide

to commit

4) NO

4) YES @
) PREPARE 3) Force-write: prepare

) PREPARE Subordinate 2
3) Force-write: abort

5) Abort transaction

Subordinate 3 and “forget” it

3) Force-write: abort
5) Abort transaction and “forget” it "
CSE 444 - Winter 2017

2PC with Abort

5) Write: end, then forget transaction

Coordinator
2) ABORT Subordinate 1

1) Force-write:
abort

QO

4) ACR\\ ®

3) Force-write: abort
5) Abort transaction

and “forget” it

Q Subordinate 2

Subordinate 3

13

Coordinator State Machine

 All states involve
waiting for messages

Receive: Commit
Send: Prepare

R: No votes
FW: Abort
S: Abort

ABORTING

R: ACKS
W: End
Forget

R: Yes votes
FW: Commit
S: Commit

W: End
Forget

Subordinate State Machine

* INIT and PREPARED
iInvolve waiting

R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
FW: Abort

PREPARED

R: Commit
FW: Commit

Abort Commit
and forget and forget 15

Handling Site Falilures

* Approach 1: no site failure detection
— Can only do retrying & blocking

* Approach 2: timeouts
— Since unilateral abort is ok,
— Subordinate can timeout in init state
— Coordinator can timeout in collecting state

— Prepared state is still blocking

« 2PC is a blocking protocol

CSE 444 - Winter 2017

16

Site Failure Handling Principles

* Retry mechanism
— In prepared state, periodically query coordinator

— In committing/aborting state, periodically resend messages to
subordinates

 If doesn't know anything about transaction respond
“abort” to inquiry messages about fate of transaction

* If there are no log records for a transaction after a
crash then abort transaction and “forget” it

CSE 444 - Winter 2017

17

Site Failure Scenarios

Examples on the board (please take notes)

Receive: Commit | R: Prepare
end: Prepare ||FW: Abort

R: Prepare
FW: Prepare

@ S: No vote . Yes vote
PREPARED

R: No votes R: Yes votes R: Abort R: Commit

FW: Abort FW: Commit FW: Abort FW: Commit

S: Abo S: Commit S: Ack
ABORTING COMMITTING
Abort Commit

and forget and forget 18

Observations

« Coordinator keeps transaction in transactions table until it
receives all acks

— To ensure subordinates know to commit or abort
— So acks enable coordinator to “forget” about transaction

« After crash, if recovery process finds no log records for a
transaction, the transaction is presumed to have aborted

* Read-only subtransactions: no changes ever need to be
undone nor redone

CSE 444 - Winter 2017 19

Presumed Abort Protocol

Optimization goals
— Fewer messages and fewer force-writes

Principle
— If nothing known about a transaction, assume ABORT

Aborting transactions need no force-writing

Avoid log records for read-only transactions
— Reply with a READ vote instead of YES vote

Optimizes read-only transactions

CSE 444 - Winter 2017

20

2PC State Machines (repeat)

Receive: Commit | R: Prepare
end: Prepare |[FW: Abort

R: Prepare
FW: Prepare

@ S: No vote . Yes vote
PREPARED

R: No votes . Yes votes R: Abort R: Commit

FW: Abort FW: Commit FW- Abort FW: Commit

S: Abo S: Commit S- Ack
ABORTING COMMITTING
Abort Commit

and forget and forget 2

Presumed Abort State Machines

Receive: Commit
end: Prepare

: 'Yes votes
R: No votes FW: Commit
W: Abort

S: Abort

S: Commit

COMMITTING

R: ACKS

R: Prepare
W: Abort

R: Prepare
FW: Prepare

S: No vote : Yes vote
PREPARED
R: Commit
R: Abort FW: Commit
W: Abor,

ABORTING

Abort
and forget

Commit
and forget

22

