
1

CSE 444: Database Internals

Lecture 22
MapReduce

1CSE 444 - Winter 2017

Announcements

• Lab 4 is due tonight

• Next week on Monday: Project milestone

• Next week on Friday: HW6

• Final project due on Tuesday of finals week

CSE 444 - Winter 2017 2

Final Project Instructions

See course website for details!

1. Design and implementation:
– There is a mandatory part and extensions
– Design, implement, and evaluate one extension

2. Testing and evaluation
– For your extension, write your own JUnit tests
– Feel free to also write scripts

3. Final report

CSE 444 - Winter 2017 3

Final Report

• Single-column & single-spaced
• Write your name!
• Structure of the final report

– Sec 1. Overall System Architecture (2 pages)
• Can reuse text from lab write-ups

– Sec 2. Detailed design of the query optimizer and
your extension (3 pages)

• Include an analysis of the query plans that your system
generates in different scenarios.

– Sec 3. Discussion (0.5-1 page)

CSE 444 - Winter 2017 4

Final Project Grading
• You will get two grades: one grade for your system and

one grade for your final report

• For the report, I will look at the depth and clarity of both
system description and experimental evaluation

• For the extension, trivial ones will not get full credit

CSE 444 - Winter 2017 5 CSE 444 - Winter 2017 6

References

• MapReduce: Simplified Data Processing on
Large Clusters. Jeffrey Dean and Sanjay
Ghemawat. OSDI'04

• Mining of Massive Datasets, by Rajaraman and
Ullman,
http://i.stanford.edu/~ullman/mmds.html
– Map-reduce (Section 20.2);
– Chapter 2 (Sections 1,2,3 only)

2

Outline

• Review high-level MR ideas from 344

• Discuss implementation in greater detail

CSE 444 - Winter 2017 7

Map Reduce Review

• Google: [Dean 2004]
• Open source implementation: Hadoop

• MapReduce = high-level programming model
and implementation for large-scale parallel data
processing

8CSE 444 - Winter 2017

MapReduce Motivation

• Not designed to be a DBMS
• Designed to simplify task of writing parallel programs

– A simple programming model that applies to many large-scale
computing problems

• Hides messy details in MapReduce runtime library:
– Automatic parallelization
– Load balancing
– Network and disk transfer optimizations
– Handling of machine failures
– Robustness
– Improvements to core library benefit all users of library!

CSE 444 - Winter 2017 9
content in part from: Jeff Dean

Data Processing
at Massive Scale

• Want to process petabytes of data and more

• Massive parallelism:
– 100s, or 1000s, or 10000s servers (think data center)
– Many hours

• Failure:
– If medium-time-between-failure is 1 year
– Then 10000 servers have one failure / hour

CSE 444 - Winter 2017 10

Data Storage: GFS/HDFS

• MapReduce job input is a file

• Common implementation is to store files in a
highly scalable file system such as GFS/HDFS
– GFS: Google File System
– HDFS: Hadoop File System

– Each data file is split into M blocks (64MB or more)
– Blocks are stored on random machines & replicated
– Files are append only

CSE 444 - Winter 2017 11 12

Observation: Your favorite parallel algorithm…

Map

(Shuffle)

Reduce

CSE 444 - Winter 2017

3

Typical Problems Solved by MR

• Read a lot of data
• Map: extract something you care about from each

record
• Shuffle and Sort
• Reduce: aggregate, summarize, filter, transform
• Write the results

CSE 444 - Winter 2017 13

Outline stays the same,
map and reduce change to fit
the problem

slide source: Jeff Dean

Data Model

Files !

A file = a bag of (key, value) pairs

A MapReduce program:
• Input: a bag of (inputkey, value)pairs
• Output: a bag of (outputkey, value)pairs

14CSE 444 - Winter 2017

Step 1: the MAP Phase

User provides the MAP-function:
• Input: (input key, value)
• Ouput: bag of (intermediate key, value)

System applies map function in parallel to all
(input key, value) pairs in the input file

15CSE 444 - Winter 2017

Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input:
(intermediate key, bag of values)

• Output (original MR paper): bag of output (values)
• Output (Hadoop): bag of (output key, values)

System groups all pairs with the same intermediate key, and
passes the bag of values to the REDUCE function

16CSE 444 - Winter 2017

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)
– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

17CSE 444 - Winter 2017

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

18CSE 444 - Winter 2017

4

Jobs v.s. Tasks

• A MapReduce Job
– One single “query”, e.g. count the words in all docs
– More complex queries may consists of multiple jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 444 - Winter 2017 19

Workers

• A worker is a process that executes one task at
a time

• Typically there is one worker per processor,
hence 4 or 8 per node

• Often talk about “slots”
– E.g., Each server has 2 map slots and 2 reduce slots

CSE 444 - Winter 2017 20

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

21

Parallel MapReduce Details

CSE 444 - Winter 2017 22

Map

(Shuffle)

Reduce

Data	not	
necessarily	local

Intermediate	data	
goes	to	local		disk

Output	to	disk,	
replicated	in	cluster

File	system:	GFS	
or	HDFS

Task

Task

MapReduce Implementation
• There is one master node
• Input file gets partitioned further into M’ splits

– Each split is a contiguous piece of the input file
– By default splits correspond to blocks

• Master assigns workers (=servers) to the M’ map
tasks, keeps track of their progress

• Workers write their output to local disk
• Output of each map task is partitioned into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map workers’

local disks 23CSE 444 - Winter 2017

Local	storage`

MapReduce Phases

24CSE 444 - Winter 2017

5

Local	storage`

MapReduce Phases

25CSE 444 - Winter 2017

Q: If we compute an aggregate,
when can we use a combiner?

Local	storage`

MapReduce Phases

26CSE 444 - Winter 2017

Combine runs same code as reduce

Interesting Implementation Details

• Worker failure:
– Master pings workers periodically,
– If down then reassigns its task to another worker
– (≠ a parallel DBMS restarts whole query)

• How many map and reduce tasks:
– Larger is better for load balancing
– But more tasks also add overheads
– (≠ parallel DBMS spreads ops across all nodes)

CSE 444 - Winter 2017 27

Interesting Implementation Details

Backup tasks:
• Straggler = a machine that takes unusually

long time to complete one of the last tasks. Eg:
– Bad disk forces frequent correctable errors (30MB/s
à 1MB/s)

– The cluster scheduler has scheduled other tasks on
that machine

• Stragglers are a main reason for slowdown
• Solution: pre-emptive backup execution of the

last few remaining in-progress tasks
CSE 444 - Winter 2017 28

Skew

CSE 444 - Winter 2017 29

0 50 100 150 200 250 300 350
Time (seconds)

Ta
sk

s

Shuffle Sort ExecM
A
P

R
E
D
U
C
E

PageRank Application

The State of MapReduce Systems

• Lots of extensions to address limitations
– Capabilities to write DAGs of MapReduce jobs
– Declarative languages
– Ability to read from structured storage (e.g., indexes)
– Etc.

• Most companies use both types of engines (MR
and DBMS), with increased integration

• New systems are emerging: e.g. Spark

CSE 444 - Winter 2017 30

6

Declarative Languages on MR

• PIG Latin (Yahoo!)
– New language, like Relational Algebra
– Open source

• HiveQL (Facebook)
– SQL-like language
– Open source

• SQL / Tenzing (Google)
– SQL on MR
– Proprietary
– Morphed into BigQuery

31CSE 444 - Winter 2017

Relational Queries over MR

• Query à query plan
• Each operator à one MapReduce job

• Example: the Pig system

CSE 444 - Winter 2017 32

Background: Pig system

33

Pig Latin
program

A = LOAD 'file1' AS (sid,pid,mass,px:double);
B = LOAD 'file2' AS (sid,pid,mass,px:double);

C = FILTER A BY px < 1.0;

D = JOIN C BY sid,
B BY sid;

STORE g INTO 'output.txt';

Ensemble of
MapReduce jobs CSE 444 - Winter 2017

Background: Pig system

34

Pig Latin
program

A = LOAD 'file1' AS (sid,pid,mass,px:double);
B = LOAD 'file2' AS (sid,pid,mass,px:double);

C = FILTER A BY px < 1.0;

D = JOIN C BY sid,
B BY sid;

STORE g INTO 'output.txt';

Ensemble of
MapReduce jobs

GroupBy in MapReduce

CSE 444 - Winter 2017 35

SELECT word, sum(1)
FROM Doc
GROUP BY word

Doc(key, word)

MAP=GROUP BY, REDUCE=Aggregate

MapReduce IS A GroupBy!

Joins in MapReduce

• If MR is GROUP-BY plus AGGREGATE, then
how do we compute R(A,B) ⋈ S(B,C) using MR?

CSE 444 - Winter 2017 36

7

Joins in MapReduce

• If MR is GROUP-BY plus AGGREGATE, then
how do we compute R(A,B) ⋈ S(B,C) using MR?

• Answer:
– Map: group R by R.B, group S by S.B

• Input = either a tuple R(a,b) or a tuple S(b,c)
• Output = (b,R(a,b)) or (b,S(b,c)) respectively

– Reduce:
• Input = (b,{R(a1,b),R(a2,b),…,S(b,c1),S(b,c2),…})
• Output = {R(a1,b),R(a2,b),…} × {S(b,c1),S(b,c2),…}
• In practice: improve the reduce function (next…)

CSE 444 - Winter 2017 37

Join in MR

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

CSE 444 - Winter 2017 38

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

CSE 444 - Winter 2017 39

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

CSE 444 - Winter 2017 40

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

(1, user)

(2, userName)

Means: it comes
from relation #1

Means: it comes
from relation #2

CSE 444 - Winter 2017 41

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

Reducer 1

Reducer 2

(1, user)

(2, userName)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)

CSE 444 - Winter 2017 42

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

Users(name, age)
Pages(userName, url)

8

Join in MR

CSE 444 - Winter 2017 43

map([String key], String value):
// value.relation is either ‘Users’ or ‘Pages’
if value.relation=‘Users’:

EmitIntermediate(value.name, (1, value));
else // value.relation=‘Pages’:

EmitIntermediate(value.userName, (2, value));

reduce(String user, Iterator values):
Users = empty; Pages = empty;
for each v in values:
if v.type = 1: Users.insert(v)
else Pages.insert(v);

for v1 in Users, for v2 in Pages
Emit(v1,v2);

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

Users(name, age)
Pages(userName, url)

Parallel DBMS vs MapReduce

• Parallel DBMS
– Relational data model and schema
– Declarative query language: SQL
– Many pre-defined operators: relational algebra
– Can easily combine operators into complex queries
– Query optimization, indexing, and physical tuning
– Streams data from one operator to the next without blocking
– Can do more than just run queries: Data management

• Updates and transactions, constraints, security, etc.

44CSE 444 - Winter 2017

Parallel DBMS vs MapReduce

• MapReduce
– Data model is a file with key-value pairs!
– No need to “load data” before processing it
– Easy to write user-defined operators
– Can easily add nodes to the cluster (no need to even restart)
– Uses less memory since processes one key-group at a time
– Intra-query fault-tolerance thanks to results on disk
– Intermediate results on disk also facilitate scheduling
– Handles adverse conditions: e.g., stragglers
– Arguably more scalable… but also needs more nodes!

45CSE 444 - Winter 2017

