CSE 444: Database Internals

Lecture 22
MapReduce
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Announcements

Lab 4 is due tonight
Next week on Monday: Project milestone
Next week on Friday: HW6

Final project due on Tuesday of finals week
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Final Project Instructions

See course website for details!

1. Design and implementation:
— There is a mandatory part and extensions
— Design, implement, and evaluate one extension

2. Testing and evaluation
— For your extension, write your own JUnit tests
— Feel free to also write scripts

3. Final report
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Final Report

« Single-column & single-spaced
* Write your name!

« Structure of the final report
— Sec 1. Overall System Architecture (2 pages)

« Can reuse text from lab write-ups

— Sec 2. Detailed design of the query optimizer and
your extension (3 pages)

* Include an analysis of the query plans that your system
generates in different scenarios.

— Sec 3. Discussion (0.5-1 page)
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Final Project Grading

You will get two grades: one grade for your system and
one grade for your final report

For the report, | will look at the depth and clarity of both
system description and experimental evaluation

For the extension, trivial ones will not get full credit
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References

 MapReduce: Simplified Data Processing on
Large Clusters. Jeffrey Dean and Sanjay
Ghemawat. OSDI'04

* Mining of Massive Datasets, by Rajaraman and
Ullman,
http://i.stanford.edu/~ullman/mmds.html
— Map-reduce (Section 20.2);

— Chapter 2 (Sections 1,2,3 only)
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Outline

* Review high-level MR ideas from 344

* Discuss implementation in greater detall
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Map Reduce Review

» Google: [Dean 2004]
* Open source implementation: Hadoop

 MapReduce = high-level programming model
and implementation for large-scale parallel data
processing
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MapReduce Motivation

* Not designed to be a DBMS

« Designed to simplify task of writing parallel programs

— A simple programming model that applies to many large-scale
computing problems

* Hides messy details in MapReduce runtime library:
— Automatic parallelization
— Load balancing
— Network and disk transfer optimizations
— Handling of machine failures
— Robustness
— Improvements to core library benefit all users of library!
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Data Processing
at Massive Scale

« Want to process petabytes of data and more

* Massive parallelism:
— 100s, or 1000s, or 10000s servers (think data center)
— Many hours

 Failure:
— If medium-time-between-failure is 1 year
— Then 10000 servers have one failure / hour
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Data Storage: GFS/HDFS

 MapReduce job input is a file

 Common implementation is to store files in a
highly scalable file system such as GFS/HDFS

— GFS: Google File System
— HDFS: Hadoop File System

— Each data file is split into M blocks (64MB or more)
— Blocks are stored on random machines & replicated
— Files are append only
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Observation: Your favorite parallel algorithm...

| | | |

Reduce

P = s
sssssse
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Typical Problems Solved by MR

Read a lot of data

Map: extract something you care about from each
record

Shuffle and Sort
Reduce: aggregate, summarize, filter, transform

Write the results

Outline stays the same,

map and reduce change to fit
the problem
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Data Model

Files !
A file = a bag of (key, wvalue) pairs
A MapReduce program:

* |Input: a bag of (inputkey, wvalue) pairs
* Qutput: a bag of (outputkey, walue)pairs
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Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, wvalue)
 Quput: bag of (intermediate key, value)

System applies map function in parallel to all
(input key, wvalue) pairsin the input file
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Step 2: the REDUCE Phase

User provides the REDUCE function:

Input:
(Intermediate key, bag of values)

Output (original MR paper): bag of output (values)
Output (Hadoop): bag of (output key, values)

System groups all pairs with the same intermediate key, and
passes the bag of values to the REDUCE function

CSE 444 - Winter 2017 16



Example

« Counting the number of occurrences of each
word in a large collection of documents

« Each Document
— The key = document id (did)

— The value = set of words (word)
reduce(String key, Iterator values):

map(String key, String value): // key: a word

// key: document name // values: a list of counts
/l value: document contents int result = 0;

for each word w in value: for each v in values:

Emitintermediate(w, “17); result += Parselnt(v);
Emit(AsString(result));
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MAP

(did1,v1)|—

(did2,v2)|—

(did3,v3)|—

(w1,1)

(w2,1)

(w3,1)

(w1,1)

(w2,1)

REDUCE

Shuffle

(w1, 25)

(W2, 77)

(w3, 12)

w1, (1,1,1,...,1))
w2, (1,1,...))
(W3,(1...))

CSE 444 - Winter 2017

18



Jobs v.s. Tasks

A MapReduce Job

— One single “query”, e.g. count the words in all docs
— More complex queries may consists of multiple jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker
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Workers

A worker is a process that executes one task at
a time

» Typically there is one worker per processor,
hence 4 or 8 per node

« Often talk about “slots”
— E.g., Each server has 2 map slots and 2 reduce slots
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MAP Tasks

L

/

\

(did1,v1)

—
—

(did2,v2)

(did3,v3)

(w1,1)

(w2,1)

(w3,1)

(w1,1)

(w2,1)

)

Shuffle

REDUCE Tasks

/

(

~

w1, (1,1,1,...,1))

w2, (1,1,...))

(w1, 25)

(W2, 77)

(W3,(1...))

>

(w3, 12)
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Parallel MapReduce Details

i i Output to disk,
\ I replicated in cluster

Reduce Task

Intermediate data
goes to local disk
o M
Map Task
Data not
necessarily local
G
File system: GFS
: or HDFS
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MapReduce Implementation

There iIs one master node

Input file gets partitioned further into M’ splits
— Each split is a contiguous piece of the input file
— By default splits correspond to blocks

Master assigns workers (=servers) to the M’ map
tasks, keeps track of their progress

Workers write their output to local disk
Output of each map task is partitioned into R regions
Master assigns workers to the R reduce tasks

Reduce workers read regions from the map workers’

local disks CSE 444 - Winter 2017 23



MapReduce Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split-# Record Reader—»Map —# ,Combine

LN

- ——

———»‘ Copy |—>M—>‘ Reduce \
B [ =

‘ Local storage |
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MapReduce Phases

Q: If we compute an aggregate,
when can we use a combiner?

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

- ——

Split-# Record Reader—»Map —# ,Combine

\

———»‘ Copy Pw—»‘ Reduce \
B [ =

‘ Local storage | ———
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MapReduce Phases

<Combine runs same code as reduce>

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split-# Record Reader—»Map —# ,Combine

\

- ——

———»‘ Copy Pw—»‘ Reduce \
B [ =

‘ Local storage | ———
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Interesting Implementation Detalls

« Worker failure:
— Master pings workers periodically,
— If down then reassigns its task to another worker
— (# a parallel DBMS restarts whole query)

 How many map and reduce tasks:
— Larger is better for load balancing
— But more tasks also add overheads
— (# parallel DBMS spreads ops across all nodes)
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Interesting Implementation Detalls

Backup tasks:

« Straggler = a machine that takes unusually
long time to complete one of the last tasks. Eg:

— Bad disk forces frequent correctable errors (30MB/s
- 1MB/s)

— The cluster scheduler has scheduled other tasks on
that machine

« Stragglers are a main reason for slowdown

« Solution: pre-emptive backup execution of the
last few remaining in-progress tasks
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PageRank Application

Time (seconds)




The State of MapReduce Systems

» Lots of extensions to address limitations
— Capabilities to write DAGs of MapReduce jobs
— Declarative languages

— Ability to read from structured storage (e.g., indexes)
— Etc.

* Most companies use both types of engines (MR
and DBMS), with increased integration

* New systems are emerging: e.g. Spark
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Declarative Languages on MR

* PIG Latin (Yahoo!)

— New language, like Relational Algebra
— Open source

* HiveQL (Facebook)
— SQL-like language
— Open source
« SQL / Tenzing (Google)
— SQL on MR
— Proprietary
— Morphed into BigQuery
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Relational Queries over MR

* Query 2 query plan
« Each operator > one MapReduce job

 Example: the Pig system
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Background Pig system

LOAD 'filel' AS (sid,pid,mass,px:double);

. - B = LOAD 'file2' AS (sid,pid,mass,px:double);
| Pig Latin
g C = FILTER A BY px < 1.0;
program ,
; . |D = JOIN C BY sid,

B BY sid;
| STORE g INTQl'output.txt';

@ | e o
i T /{&““‘\

CSE 444 - Winter 2017 33



Background Pig system

LOAD 'filel' AS (sid,pid,mass,px:double);

. - B = LOAD 'file2' AS (sid,pid,mass,px:double);
| Pig Latin
g C = FILTER A BY px < 1.0;
program ,
- ., |D = JOIN C BY sid,

B BY sid;
i STORE g INTQl'output.txt';

Parsed
program

Ensemble of
MapReduce jobs
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Doc(key, word)

GroupBYy in MapReduce

MapReduce IS A GroupBY!

MAP=GROUP BY, REDUCE=Aggregate

SELECT word, sum(1)
FROM Doc
GROUP BY word
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Joins in MapReduce

* If MR is GROUP-BY plus AGGREGATE, then
how do we compute R(A,B) = S(B,C) using MR?



Joins in MapReduce

* If MR is GROUP-BY plus AGGREGATE, then
how do we compute R(A,B) = S(B,C) using MR?

* Answer:

— Map: group R by R.B, group S by S.B
* Input = either a tuple R(a,b) or a tuple S(b,c)
e Output = (b,R(a,b)) or (b,S(b,c)) respectively

— Reduce:
* Input = (b,{R(a1,b),R(a2,b),...,S(b,c1),S(b,c2),...})
* QOutput ={R(a1,b),R(a2,b),...} x {S(b,c1),S(b,c2),...}
* In practice: improve the reduce function (next...)



Users(name, age)
Pages(userName, url)

Join in MR

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
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Users(name, age)
Pages(userName, url)

Join iIn MR

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
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Users(name, age)
Pages(userName, url)

Join iIn MR

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

a Map 1 A
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Users(name, age)
Pages(userName, url)

Join iIn MR

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = joiln Users by name, Pages by userName; Means: it comes
/ \ from relation #1
| Map 1 e
(1, user)

Pages

Means: it comes
from relation #2

O
o

(2, userName)
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Users =
Pages =
Jnd =

Join iIn MR

as
as
Jjoln Users by name,

load ‘users’
load ‘pages’

Pages

Users

(name, age);

Users(name, age)

(userName, url);

/rlwap1 A

Users

Pages by userName;

(1, user)

2 /
g Map 2 h

Pages

2 v
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(2, userName)

—>

Pages(userName, url)

‘R

educer

(1, fred)
(2, fred)
(2, fred)

A

o
('t

-

Reducer 2

(1, jane)
(2, jane)
(2, jane)

/
) 0)

/
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Users(name, age)
Pages(userName, url)

Join iIn MR

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

map([String key], String value):
// value.relation is either ‘Users’ or ‘Pages’
if value.relation="Users’:
Emitintermediate(value.name, (1, value));
else // value.relation="Pages’:

Emitintermediate(value.userName, (2, value));

reduce(String user, Iterator values):
Users = empty; Pages = empty;
for each v in values:
If v.type = 1: Users.insert(v)
else Pages.insert(v);
for v1 in Users, for v2 in Pages
Emit(v1,v2);
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Parallel DBMS vs MapReduce

 Parallel DBMS

Relational data model and schema

Declarative query language: SQL

Many pre-defined operators: relational algebra

Can easily combine operators into complex queries

Query optimization, indexing, and physical tuning

Streams data from one operator to the next without blocking

Can do more than just run queries: Data management
« Updates and transactions, constraints, security, etc.
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Parallel DBMS vs MapReduce

 MapReduce

Data model is a file with key-value pairs!

No need to “load data” before processing it

Easy to write user-defined operators

Can easily add nodes to the cluster (no need to even restart)
Uses less memory since processes one key-group at a time
Intra-query fault-tolerance thanks to results on disk
Intermediate results on disk also facilitate scheduling
Handles adverse conditions: e.g., stragglers

Arguably more scalable... but also needs more nodes!
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