CSE 444: Database Internals

Lecture 22
MapReduce

CSE 444 - Winter 2017

Announcements

Lab 4 is due tonight
Next week on Monday: Project milestone
Next week on Friday: HW6

Final project due on Tuesday of finals week

CSE 444 - Winter 2017

Final Project Instructions

See course website for details!

1. Design and implementation:
— There is a mandatory part and extensions
— Design, implement, and evaluate one extension

2. Testing and evaluation
— For your extension, write your own JUnit tests
— Feel free to also write scripts

3. Final report

CSE 444 - Winter 2017

Final Report

« Single-column & single-spaced
* Write your name!

« Structure of the final report
— Sec 1. Overall System Architecture (2 pages)

« Can reuse text from lab write-ups

— Sec 2. Detailed design of the query optimizer and
your extension (3 pages)

* Include an analysis of the query plans that your system
generates in different scenarios.

— Sec 3. Discussion (0.5-1 page)

CSE 444 - Winter 2017

Final Project Grading

You will get two grades: one grade for your system and
one grade for your final report

For the report, | will look at the depth and clarity of both
system description and experimental evaluation

For the extension, trivial ones will not get full credit

CSE 444 - Winter 2017 5

References

 MapReduce: Simplified Data Processing on
Large Clusters. Jeffrey Dean and Sanjay
Ghemawat. OSDI'04

* Mining of Massive Datasets, by Rajaraman and
Ullman,
http://i.stanford.edu/~ullman/mmds.html
— Map-reduce (Section 20.2);

— Chapter 2 (Sections 1,2,3 only)

CSE 444 - Winter 2017

Outline

* Review high-level MR ideas from 344

* Discuss implementation in greater detall

CSE 444 - Winter 2017

Map Reduce Review

» Google: [Dean 2004]
* Open source implementation: Hadoop

 MapReduce = high-level programming model
and implementation for large-scale parallel data
processing

CSE 444 - Winter 2017 8

MapReduce Motivation

* Not designed to be a DBMS

« Designed to simplify task of writing parallel programs

— A simple programming model that applies to many large-scale
computing problems

* Hides messy details in MapReduce runtime library:
— Automatic parallelization
— Load balancing
— Network and disk transfer optimizations
— Handling of machine failures
— Robustness
— Improvements to core library benefit all users of library!

CSE 444 - Winter 2017 9
content in part from: Jeff Dean

Data Processing
at Massive Scale

« Want to process petabytes of data and more

* Massive parallelism:
— 100s, or 1000s, or 10000s servers (think data center)
— Many hours

 Failure:
— If medium-time-between-failure is 1 year
— Then 10000 servers have one failure / hour

CSE 444 - Winter 2017 10

Data Storage: GFS/HDFS

 MapReduce job input is a file

 Common implementation is to store files in a
highly scalable file system such as GFS/HDFS

— GFS: Google File System
— HDFS: Hadoop File System

— Each data file is split into M blocks (64MB or more)
— Blocks are stored on random machines & replicated
— Files are append only

CSE 444 - Winter 2017

11

Observation: Your favorite parallel algorithm...

| | | |

Reduce

P = s
sssssse

CSE 444 - Winter 2017

12

Typical Problems Solved by MR

Read a lot of data

Map: extract something you care about from each
record

Shuffle and Sort
Reduce: aggregate, summarize, filter, transform

Write the results

Outline stays the same,

map and reduce change to fit
the problem

CSE 444 - Winter 2017 13

slide source: Jeff Dean

Data Model

Files !
A file = a bag of (key, wvalue) pairs
A MapReduce program:

* |Input: a bag of (inputkey, wvalue) pairs
* Qutput: a bag of (outputkey, walue)pairs

CSE 444 - Winter 2017

14

Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, wvalue)
 Quput: bag of (intermediate key, value)

System applies map function in parallel to all
(input key, wvalue) pairsin the input file

CSE 444 - Winter 2017

15

Step 2: the REDUCE Phase

User provides the REDUCE function:

Input:
(Intermediate key, bag of values)

Output (original MR paper): bag of output (values)
Output (Hadoop): bag of (output key, values)

System groups all pairs with the same intermediate key, and
passes the bag of values to the REDUCE function

CSE 444 - Winter 2017 16

Example

« Counting the number of occurrences of each
word in a large collection of documents

« Each Document
— The key = document id (did)

— The value = set of words (word)
reduce(String key, Iterator values):

map(String key, String value): // key: a word

// key: document name // values: a list of counts
/l value: document contents int result = 0;

for each word w in value: for each v in values:

Emitintermediate(w, “17); result += Parselnt(v);
Emit(AsString(result));

CSE 444 - Winter 2017 17

MAP

(did1,v1)|—

(did2,v2)|—

(did3,v3)|—

(w1,1)

(w2,1)

(w3,1)

(w1,1)

(w2,1)

REDUCE

Shuffle

(w1, 25)

(W2, 77)

(w3, 12)

w1, (1,1,1,...,1))
w2, (1,1,...))
(W3,(1...))

CSE 444 - Winter 2017

18

Jobs v.s. Tasks

A MapReduce Job

— One single “query”, e.g. count the words in all docs
— More complex queries may consists of multiple jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker

CSE 444 - Winter 2017

19

Workers

A worker is a process that executes one task at
a time

» Typically there is one worker per processor,
hence 4 or 8 per node

« Often talk about “slots”
— E.g., Each server has 2 map slots and 2 reduce slots

CSE 444 - Winter 2017 20

MAP Tasks

L

/

\

(did1,v1)

—
—

(did2,v2)

(did3,v3)

(w1,1)

(w2,1)

(w3,1)

(w1,1)

(w2,1)

)

Shuffle

REDUCE Tasks

/

(

~

w1, (1,1,1,...,1))

w2, (1,1,...))

(w1, 25)

(W2, 77)

(W3,(1...))

>

(w3, 12)

21

Parallel MapReduce Details

i i Output to disk,
\ I replicated in cluster

Reduce Task

Intermediate data
goes to local disk
o M
Map Task
Data not
necessarily local
G
File system: GFS
: or HDFS
CSE 444 - Winter 2017

MapReduce Implementation

There iIs one master node

Input file gets partitioned further into M’ splits
— Each split is a contiguous piece of the input file
— By default splits correspond to blocks

Master assigns workers (=servers) to the M’ map
tasks, keeps track of their progress

Workers write their output to local disk
Output of each map task is partitioned into R regions
Master assigns workers to the R reduce tasks

Reduce workers read regions from the map workers’

local disks CSE 444 - Winter 2017 23

MapReduce Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split-# Record Reader—»Map —# ,Combine

LN

- ——

———»‘ Copy |—>M—>‘ Reduce \
B [=

‘ Local storage |

CSE 444 - Winter 2017 24

MapReduce Phases

Q: If we compute an aggregate,
when can we use a combiner?

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

- ——

Split-# Record Reader—»Map —# ,Combine

\

———»‘ Copy Pw—»‘ Reduce \
B [=

‘ Local storage | ———

CSE 444 - Winter 2017 25

MapReduce Phases

<Combine runs same code as reduce>

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split-# Record Reader—»Map —# ,Combine

\

- ——

———»‘ Copy Pw—»‘ Reduce \
B [=

‘ Local storage | ———

CSE 444 - Winter 2017 26

Interesting Implementation Detalls

« Worker failure:
— Master pings workers periodically,
— If down then reassigns its task to another worker
— (# a parallel DBMS restarts whole query)

 How many map and reduce tasks:
— Larger is better for load balancing
— But more tasks also add overheads
— (# parallel DBMS spreads ops across all nodes)

CSE 444 - Winter 2017 27

Interesting Implementation Detalls

Backup tasks:

« Straggler = a machine that takes unusually
long time to complete one of the last tasks. Eg:

— Bad disk forces frequent correctable errors (30MB/s
- 1MB/s)

— The cluster scheduler has scheduled other tasks on
that machine

« Stragglers are a main reason for slowdown

« Solution: pre-emptive backup execution of the
last few remaining in-progress tasks

CSE 444 - Winter 2017 28

PageRank Application

Time (seconds)

The State of MapReduce Systems

» Lots of extensions to address limitations
— Capabilities to write DAGs of MapReduce jobs
— Declarative languages

— Ability to read from structured storage (e.g., indexes)
— Etc.

* Most companies use both types of engines (MR
and DBMS), with increased integration

* New systems are emerging: e.g. Spark

CSE 444 - Winter 2017 30

Declarative Languages on MR

* PIG Latin (Yahoo!)

— New language, like Relational Algebra
— Open source

* HiveQL (Facebook)
— SQL-like language
— Open source
« SQL / Tenzing (Google)
— SQL on MR
— Proprietary
— Morphed into BigQuery

CSE 444 - Winter 2017

31

Relational Queries over MR

* Query 2 query plan
« Each operator > one MapReduce job

 Example: the Pig system

CSE 444 - Winter 2017

32

Background Pig system

LOAD 'filel' AS (sid,pid,mass,px:double);

. - B = LOAD 'file2' AS (sid,pid,mass,px:double);
| Pig Latin
g C = FILTER A BY px < 1.0;
program ,
; . |D = JOIN C BY sid,

B BY sid;
| STORE g INTQl'output.txt';

@ | e o
i T /{&““‘\

CSE 444 - Winter 2017 33

Background Pig system

LOAD 'filel' AS (sid,pid,mass,px:double);

. - B = LOAD 'file2' AS (sid,pid,mass,px:double);
| Pig Latin
g C = FILTER A BY px < 1.0;
program ,
- ., |D = JOIN C BY sid,

B BY sid;
i STORE g INTQl'output.txt';

Parsed
program

Ensemble of
MapReduce jobs

34

Doc(key, word)

GroupBYy in MapReduce

MapReduce IS A GroupBY!

MAP=GROUP BY, REDUCE=Aggregate

SELECT word, sum(1)
FROM Doc
GROUP BY word

CSE 444 - Winter 2017

35

Joins in MapReduce

* If MR is GROUP-BY plus AGGREGATE, then
how do we compute R(A,B) = S(B,C) using MR?

Joins in MapReduce

* If MR is GROUP-BY plus AGGREGATE, then
how do we compute R(A,B) = S(B,C) using MR?

* Answer:

— Map: group R by R.B, group S by S.B
* Input = either a tuple R(a,b) or a tuple S(b,c)
e Output = (b,R(a,b)) or (b,S(b,c)) respectively

— Reduce:
* Input = (b,{R(a1,b),R(a2,b),...,S(b,c1),S(b,c2),...})
* QOutput ={R(a1,b),R(a2,b),...} x {S(b,c1),S(b,c2),...}
* In practice: improve the reduce function (next...)

Users(name, age)
Pages(userName, url)

Join in MR

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

CSE 444 - Winter 2017 38

Users(name, age)
Pages(userName, url)

Join iIn MR

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

CSE 444 - Winter 2017 39

Users(name, age)
Pages(userName, url)

Join iIn MR

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

a Map 1 A

CSE 444 - Winter 2017 40

Users(name, age)
Pages(userName, url)

Join iIn MR

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = joiln Users by name, Pages by userName; Means: it comes
/ \ from relation #1
| Map 1 e
(1, user)

Pages

Means: it comes
from relation #2

O
o

(2, userName)

CSE 444 - Winter 2017 41

Users =
Pages =
Jnd =

Join iIn MR

as
as
Jjoln Users by name,

load ‘users’
load ‘pages’

Pages

Users

(name, age);

Users(name, age)

(userName, url);

/rlwap1 A

Users

Pages by userName;

(1, user)

2 /
g Map 2 h

Pages

2 v

CSE 444 - Winter 2017

(2, userName)

—>

Pages(userName, url)

‘R

educer

(1, fred)
(2, fred)
(2, fred)

A

o
('t

-

Reducer 2

(1, jane)
(2, jane)
(2, jane)

/
) 0)

/

42

Users(name, age)
Pages(userName, url)

Join iIn MR

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

map([String key], String value):
// value.relation is either ‘Users’ or ‘Pages’
if value.relation="Users’:
Emitintermediate(value.name, (1, value));
else // value.relation="Pages’:

Emitintermediate(value.userName, (2, value));

reduce(String user, Iterator values):
Users = empty; Pages = empty;
for each v in values:
If v.type = 1: Users.insert(v)
else Pages.insert(v);
for v1 in Users, for v2 in Pages
Emit(v1,v2);

CSE 444 - Wi

Parallel DBMS vs MapReduce

 Parallel DBMS

Relational data model and schema

Declarative query language: SQL

Many pre-defined operators: relational algebra

Can easily combine operators into complex queries

Query optimization, indexing, and physical tuning

Streams data from one operator to the next without blocking

Can do more than just run queries: Data management
« Updates and transactions, constraints, security, etc.

CSE 444 - Winter 2017 44

Parallel DBMS vs MapReduce

 MapReduce

Data model is a file with key-value pairs!

No need to “load data” before processing it

Easy to write user-defined operators

Can easily add nodes to the cluster (no need to even restart)
Uses less memory since processes one key-group at a time
Intra-query fault-tolerance thanks to results on disk
Intermediate results on disk also facilitate scheduling
Handles adverse conditions: e.g., stragglers

Arguably more scalable... but also needs more nodes!

CSE 444 - Winter 2017 45

