CSE 444: Database Internals

Lectures 15 and 16
Transactions: Optimistic
Concurrency Control

CSE 444 - Winter 2017 1

Pessimistic v.s. Optimistic

* Pessimistic CC (locking)
— Prevents unserializable schedules
— Never abort for serializability (but may abort for deadlocks)
— Best for workloads with high levels of contention

» Optimistic CC (timestamp, multi-version, validation)
— Assume schedule will be serializable
— Abort when conflicts detected
— Best for workloads with low levels of contention

CSE 444 - Winter 2017 2

Outline

» Concurrency control by timestamps (18.8)
» Concurrency control by validation (18.9)

» Snapshot Isolation

CSE 444 - Winter 2017 3

Timestamps
+ Each transaction receives unique timestamp TS(T)
Could be:

* The system’s clock
* A unique counter, incremented by the scheduler

CSE 444 - Winter 2017 4

Timestamps

Main invariant:

The timestamp order defines
the serialization order of the transaction

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

CSE 444 - Winter 2017 5

Timestamps

With each element X, associate

+ RT(X) = the highest timestamp of any
transaction U that read X

* WT(X) = the highest timestamp of any
transaction U that wrote X

* C(X) = the commit bit: true when transaction
with highest timestamp that wrote X
committed

CSE 444 - Winter 2017 6

Main Idea

For any r(X) or w1(X) request, check for
conflicts:

How do we check
i ?
« wy(X) . .. r(X) if Read too late 7

© ruX) - wr(X)
CWyX) - . we(X)
late ?

CSE 444 - Winter 2017 7

Main Idea

For any r(X) or w(X) request, check for
conflicts:

How do we check
« wy(X) ... r(X if Read too late ?

It
f uX) - we(X)
w

* wy(X) . .. we(X) Write too
late ?

‘When T requests r(X), need to check TS(U) < TS(T) I

CSE 444 - Winter 2017 8

Read Too Late

* T wants to read X

\STAliT(T) _START(U) ... wy(X) . .. rT‘(X)‘

CSE 444 - Winter 2017 9

Read Too Late

* T wants toread X

\STAéT(T) START(U) ... wy(X) ... rT‘(X)‘

If WT(X) > TS(T) then need to rollback T'!

CSE 444 - Winter 2017 10

Write Too Late

* T wants to write X

\STAﬁT(T) S'EART(U) ru(k) B .WT‘(X)‘

CSE 444 - Winter 2017 1

Write Too Late

* T wants to write X

\START(T) szRT(U) ru(k) . w{(X) |

If RT(X) > TS(T) then need to rollback T!

CSE 444 - Winter 2017 12

Thomas’ Rule

But we can still handle it:
* T wants to write X

\STAéT(T) szRT(V) wV(S() o w}(X)\

If RT(X) = TS(T) and WT(X) > TS(T)
then don’t write X at all !

‘ Why does this work? ‘ 1

Thomas’ Rule

But we can still handle it:
* T wants to write X

\STAﬁT(T) szRT(V) wv(k) o w‘T(X)‘

If RT(X) = TS(T) and WT(X) > TS(T)
then don’t write X at all !

View-serializable
‘Why does this work?‘ schedule

View-Serializability

» By using Thomas’ rule we do obtain a view-
serializable schedule

CSE 444 - Winter 2017 15

Summary So Far

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

Transaction wants to read element X
If WT(X) > TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

CSE 444 - Winter 2017 16

Ensuring Recoverable Schedules

Recall:

» Schedule avoids cascading aborts if
whenever a transaction reads an element,
then the transaction that wrote it must have
already committed

* Use the commit bit C(X) to keep track if the
transaction that last wrote X has committed

CSE 444 - Winter 2017 17

Ensuring Recoverable Schedules

Read dirty data:
« T wants to read X, and WT(X) < TS(T)
+ Seems OK, but...

\START(U) ... START(T) ... W}U(X). (1:(X))... ABoéT(U) |

If C(X)=false, T needs to wait for it to become true

CSE 444 - Winter 2017 18

Ensuring Recoverable Schedules

Thomas’ rule needs to be revised:
* T wants to write X, and WT(X) > TS(T)
« Seems OK not to write at all, but ...

\START(T) ... START(U)... wy(X). . @T(x) ABORT(U)

If C(X)=false, T needs to wait for it to become true

CSE 444 - Winter 2017 19

Timestamp-based Scheduling

* When a transaction T requests r(X) or w(X),
the scheduler examines RT(X), WT(X), C(X),
and decides one of:

e To grant the request, or

» Torollback T (and restart with later timestamp)
* To delay T until C(X) = true

CSE 444 - Winter 2017 20

Timestamp-based Scheduling

RULES including commit bit
* There are 4 long rules in Sec. 18.8.4

* You should be able to derive them yourself,
based on the previous slides

* Make sure you understand them !

READING ASSIGNMENT: 18.8.4

CSE 444 - Winter 2017 21

Timestamp-based Scheduling
(Read 18.8.4 instead!)

Transaction wants to READ element X
If WT(X) > TS(T) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T)
Then If C(X) = false then WAIT
else IGNORE write (Thomas Write Rule)
Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

CSE 444 - Winter 2017 22

Basic Timestamps with Commit Bit

T, T, T T, A
1 2 3 4 RT=0
WT=0 C=true
W;(A)

Time

CSE 444 - Winter 2017 23

Basic Timestamps with Commit Bit

T, T, T3 T, A
1 2 3 4 RT=0
WT=0 C=true
W,(A) WT=2 C=false
Time R4(A) RT=0
Abort R3(A)
Delay
C C=true
R3(A) RT=3
W,(A)| WT=4 C=false
Ws(A)
delay
abort | WT=2 C=true
W3(A) WT=3 C=false

CSE 444 - Winter 2017 24

Summary of Timestamp-based
Scheduling

* View-serializable

» Avoids cascading aborts (hence: recoverable)

* Does NOT handle phantoms

— These need to be handled separately, e.g.
predicate locks

CSE 444 - Winter 2017 25

Multiversion Timestamp

* When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

* ldea: keep multiple versions of X:
Xi Xets X, - - -

[TS(X) > TS(Xer) > TS(Xeo) > . - .|

CSE 444 - Winter 2017 26

Details

* When w+(X) occurs,
if the write is legal then
create a new version, denoted X; where t = TS(T)

* When r{(X) occurs,
find most recent version X, such thatt < TS(T)
Notes:
— WT(X,) =tand it never changes
— RT(X;) must still be maintained to check legality of writes

+ Can delete X; if we have a later version X;, and all active
transactions T have TS(T) > t1

CSE 444 - Winter 2017 27

Example (in class)

Four versions of X: X; Xg X Xig

Re(X) -- Read X3

W,,(X) — Check read timestamp of X,z
R45(X) — Read X,

W;(X) — Check read timestamp of X,

When can we delete X;3?

CSE 444 - Winter 2017 28

Example w/ Basic Timestamps

T, T, T, T, A
Timestamps: 150 200 |175 [225 | RT=0
WT=0
R(A) RT=150
W,4(A) WT=150
R,(A) RT=200
W,(A) WT=200
R3(A)
Abort
R4(A) | RT=225

CSE 444 - Winter 2017 29

Example w/ Multiversion

T1 T2 T3 T4 AO A1 50 AZDO

150 200 |175 |225

R1(A) RT=150
W;(A) Create
Ry(A) RT=200
W,(A) Create
R3(A) RT=200
Wa(A)
abort

R4(A) RT=225

CSE 444 - Winter 2017 30

Second Example w/ Multiversion

Ty T, T3 T4 Ts Ac Av A Az Ay As
1 2 3 4 5
W,4(A)
CSE 444 - Winter 2017 31
Outline

» Concurrency control by timestamps (18.8)
« Concurrency control by validation (18.9)
* Snapshot Isolation

CSE 444 - Winter 2017 33

Avoid r{(X) - wy(X) Conflicts

START(U) VAL(U) FIN(U)

U: | Read phase‘ Validate | Write phase

conflicts

T. | Read phase‘ Validate ? |
1

START(T) VAL(T)

Second Example w/ Multiversion
T, T, Ty |Ta |Ts [Ac Ay A, Ay A, A
1 2 3 4 5
W,(A) Create
WA1(A) Create
Ry(A) RT=2
Ry(A) RT=3
W,(A)
abort Rs(A) RT=5
Wi(A Create
Ry(A) RT=5
R4(A) RT=3
c X
C X

Concurrency Control by
Validation

« Each transaction T defines:
— Read set RS(T) = the elements it reads
— Write set WS(T) = the elements it writes

« Each transaction T has three phases:
— Read phase; time = START(T)
— Validate phase (may need to rollback); time = VAL(T)
— Write phase; time = FIN(T)

Main invariant: the serialization order is VAL(T)I

CSE 444 - Winter 2017 34

IF RS(T) N WS(U) and FIN(U) > START(T)
(U has validated and U has not finished before T begun)
Then ROLLBACK(T)

Avoid w(X) - wy(X) Conflicts

START(U) VALl(U) FIN(U)

U: | Read phase‘ Validate ‘ Write phase

conflicts
T. | Read phase \ Validate \ Write phase ?

|
START(T) VAL(T)

CSE 444 - Winter 2017 35

IF WS(T) N WS(U) and FIN(U) > VAL(T)
(U has validated and U has not finished before T validates)
Then ROLLBACK(T)

—
CSE 444 - Winter 2017 36

Outline

» Concurrency control by timestamps (18.8)
« Concurrency control by validation (18.9)

» Snapshot Isolation
— Not in the book, but good overview in Wikipedia
— Better: pay attention in class!

CSE 444 - Winter 2017 37

Snapshot Isolation

A type of multiversion concurrency control algorithm
Provides yet another level of isolation

Very efficient, and very popular
— Oracle, PostgreSQL, SQL Server 2005

Prevents many classical anomalies BUT...

Not serializable (!), yet ORACLE and PostgreSQL use it
even for SERIALIZABLE transactions!
— But “serializable snapshot isolation” now in PostgreSQL

CSE 444 - Winter 2017 38

Snapshot Isolation Overview

Each transactions receives a timestamp TS(T)
Transaction T sees snapshot at time TS(T) of the database

Write/write conflicts resolved by “first committer wins” rule
— Loser gets aborted

Read/write conflicts are ignored

CSE 444 - Winter 2017 39

Snapshot Isolation Details

Multiversion concurrency control:

— Versions of X: Xy, Xio, Xia, - - -

When T reads X, return Xrg).

When T writes X (to avoid lost update):
— If latest version of X is TS(T) then proceed
— If C(X) = true then abort

— If C(X) = false then wait

When T commits, write its updates to disk

CSE 444 - Winter 2017 40

What Works and What Not
* No dirty reads (Why ?)

* No inconsistent reads (Why ?)
* No lost updates (“first committer wins”)

* Moreover: no reads are ever delayed

* However: read-write conflicts not caught !

CSE 444 - Winter 2017 41

Write Skew
T1: T2:
READ(X); READ(Y);
if X >=50 if Y >= 50
then Y = -50; WRITE(Y) then X = -50; WRITE(X)
COMMIT COMMIT

In our notation:

[Ry(X), Ry(Y), W,(Y), Wy(X), C1,C, |

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

CSE 444 - Winter 2017 42

Write Skews Can Be Serious

« Acidicland had two viceroys, Delta and Rho
» Budget had two registers: taXes, and spendYng
« They had high taxes and low spending...

Delta: Rho:
READ(taXes); READ(spendYng);
if taXes = ‘High’ if spendYng = ‘Low’

then { spendYng = ‘Raise’;
WRITE(spendYng) }
COMMIT COMMIT

then {taXes = ‘Cut’;
WRITE(taXes) }

... and they ran a deficit ever since. *

Discussion: Tradeoffs

+ Pessimistic CC: Locks
— Great when there are many conflicts
— Poor when there are few conflicts

« Optimistic CC: Timestamps, Validation, S|
— Poor when there are many conflicts (rollbacks)
— Great when there are few conflicts

« Compromise
— READ ONLY transactions — timestamps
— READ/WRITE transactions — locks

CSE 444 - Winter 2017

a4

Commercial Systems

Always check documentation!
+ DB2: Strict 2PL
+ SQL Server:
— Strict 2PL for standard 4 levels of isolation
— Multiversion concurrency control for snapshot isolation
+ PostgreSQL: SI; recently: seralizable Si (!)
» Oracle: Sl

CSE 444 - Winter 2017 45

