CSE 444: Database Internals

Lectures 13
Transaction Schedules

CSE 444 - Winter 2017



Motivating Example

Client 1:
UPDATE Budget

SET money=money-100
WHERE pid = 1

Client 2:
SELECT sum(money)
FROM Budget

UPDATE Budget
SET money=money+60
WHERE pid = 2

4 _ )
Would like to treat
each group of

Instruction Ni
&' structions as a u |tj

UPDATE Budget
SET money=money+40
WHERE pid = 3

CSE 444 - Winter 2017




Transaction

Definition: a transaction is a sequence of updates to the
database with the property that either all complete,

or none completes (all-or-nothing).
ﬂay be omitted if

START TRANSACTION i o
first SQL query
[SQL statements] starts txn

COMMIT or ROLLBACK (=ABORT)
In ad-hoc SQL: each statement = one transaction

This is referred to as autocommit
CSE 444 - Winter 2017 3



Motivating Example

START TRANSACTION
UPDATE Budget

SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget

SET money=money+40

WHERE pid = 3
COMMIT (or ROLLBACK)

SELECT sum(money)
FROM Budget

With autocommit and

without START TRANSACTION,
each SQL command
Qs a transaction

~

)

CSE 444 - Winter 2017 4



ROLLBACK

 |If the app gets to a place where it can't
complete the transaction successfully, it can

execute ROLLBACK

* This causes the system to “abort” the
transaction

— Database returns to a state without any of the
changes made by the transaction

« Several reasons: user, application, system

CSE 444 - Winter 2017



Transactions

* Major component of database systems

 Critical for most applications; arguably more so
than SQL

« Turing awards to database researchers:
— Charles Bachman 1973
— Edgar Codd 1981 for inventing relational dbs
— Jim Gray 1998 for inventing transactions
— Mike Stonebraker 2015 for INGRES and Postgres

« And many other ideas after that

CSE 444 - Winter 2017



ACID Properties

tomicity: Either all changes performed by
transaction occur or none occurs

onsistency: A transaction as a whole does not
violate integrity constraints

solation: Transactions appear to execute one
after the other in sequence

urability: If a transaction commits, its changes
will survive failures

CSE 444 - Winter 2017



What Could Go Wrong?

Why is it hard to provide ACID properties?

« Concurrent operations
— Isolation problems
— We saw one example earlier

» Failures can occur at any time
— Atomicity and durability problems
— Later lectures

* Transaction may need to abort

CSE 444 - Winter 2017



Terminology Needed For Lab 3
Buffer Manager Policies

STEAL or NO-STEAL

— Can an update made by an uncommitted transaction overwrite
the most recent committed value of a data item on disk?

FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk before the
transaction commits?

Easiest for recovery: NO-STEAL/FORCE (lab 3)
Highest performance: STEAL/NO-FORCE (lab 4)
We will get back to this next week

CSE 444 - Winter 2017



Transaction Isolation

CSE 444 - Winter 2017

10



Concurrent Execution Problems

* Write-read conflict: dirty read, inconsistent read

— A transaction reads a value written by another transaction
that has not yet committed

» Read-write conflict: unrepeatable read

— A transaction reads the value of the same object twice.
Another transaction modifies that value in between the
two reads

* Write-write conflict: lost update

— Two transactions update the value of the same object.
The second one to write the value overwrites the first
change

CSE 444 - Winter 2017 11



Schedules

A schedule Is a sequence
of interleaved actions
from all transactions

CSE 444 - Winter 2017

12



A and B are elements

Examp|e in the database

t and s are variables

%ource code -
T1 T2

READ(A,t) READ(A, s)
t:=1t+100 S :=8%2
WRITE(A, 1) WRITE(A,s)
READ(B,t) READ(B,s)
t:=t+100 S :=8%2
WRITE(B,t) WRITE(B,s)

CSE 444 - Winter 2017 13



A Serial Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A,s)
S = §%2
WRITE(A,s)
READ(B,s)
S =82

WRITE(B,s)

CSE 444 - Winter 2017

14



Serializable Schedule

A schedule is serializable if it is
eq_uivalent to a serial schedule

CSE 444 - Winter 2017

15



A Serializable Schedule

T1 T2
READ(A, t)
t:=t+100
WRITE(A, t)
READ(A,s)
S =82
WRITE(A,s)
READ(B, t)
t:=t+100
WRITE(B,1)
READ(B,s)
This 1s a serializable schedule. S :=8%2

This is NOT a serial schedule

WRITE(B,s)

CSE 444 - Winter 2017

16



A Non-Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)
READ(A,s)
S :=8%2
WRITE(A,s)
READ(B,s)
S = 8%2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,t)

CSE 444 - Winter 2017

17



Serializable Schedules

 The role of the scheduler is to ensure that the
schedule is serializable

Q: Why not run only serial schedules ?
|.e. run one transaction after the other ?

CSE 444 - Winter 2017

18



Serializable Schedules

 The role of the scheduler is to ensure that the
schedule is serializable

Q: Why not run only serial schedules ?
|.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may schedule TXNs serially

CSE 444 - Winter 2017 19




Still Serializable, but...

T1 T2
READ(A, )
t:=t+100
WRITE(A, 1)
READ(A,s)
Schedule is serializable \S/VI;I?'E(,%\OS)
because t=t+100 and READ(B S’)
s=s+200 commute S =g + 200
WRITE(B,s)
READ(B, t)
t:=t+100
WRITE(B, 1)

...we don’t expect the scheduler to schedule this




Ignoring Details

* Assume worst case updates:
— We never commute actions done by transactions

* Therefore, we only care about reads and writes
— Transaction = sequence of R(A)'s and W(A)'s

T, r1(A); wy(A); ry(B); wy(B)
T,: 1,(A); Wo(A); rx(B); w,(B)

CSE 444 - Winter 2017

21



Conflicts

 Write-Read — WR
e Read-Write — RW
e Write-Write — WW

CSE 444 - Winter 2017

22



Conflict Serializability

Conflicts:

Two actions by same transaction T::

Two writes by T;, T, to same element

Read/write by T;, T; to same element

CSE 444 - Winter 2017




Conflict Serializability

Definition A schedule is conflict serializable
If it can be transformed into a serial
schedule by a series of swappings
of adjacent non-conflicting actions

* Every conflict-serializable schedule is serializable
* The converse is not true in general

CSE 444 - Winter 2017 24



Conflict Serializability

Example:

ri(A); Wi(A); ra(A); Wo(A); r(B); wy(B); ra(B); wy(B)

CSE 444 - Winter 2017



Conflict Serializability

Example:

ri(A); Wi(A); ra(A); Wo(A); r(B); wy(B); ra(B); wy(B)

ri(A); We(A); r1(B); wq(B); ra(A); Wa(A); r(B); wy(B)

CSE 444 - Winter 2017

26



Conflict Serializability

Example:
r1(A); wy(A); ra(A);

Wy (A); r4(B);

w,(B); ra(B); wo(B)

ri(A); We(A); r1(B); wq(B); ra(A); Wa(A); r(B); wy(B)

CSE 444 - Winter 2017 27



Conflict Serializability

Example:
r1(A); wy(A); ra(A);

Wy (A); r4(B);

w,(B); ra(B); wo(B)

~~
W (A); w4(B); r2(B); w,(B)

ri(A); We(A); r1(B); wq(B); ra(A); Wa(A); r(B); wy(B)

CSE 444 - Winter 2017 28



Conflict Serializability

Example:
ri(A);, wi(A); ra(A); w,(B); ra(B); wo(B)

ri(A); We(A); r1(B); wq(B); ra(A); Wa(A); r(B); wy(B)

CSE 444 - Winter 2017 29




Testing for Conflict-Serializability

Precedence graph:
* A node for each transaction T,

* An edge from T, to T; whenever an action in T,
conflicts with, and comes before an action in Tj

* The schedule is serializable iff the precedence
graph is acyclic

CSE 444 - Winter 2017 30



Example 1

ry(A); r1(B); wy(A); ra(A); wq(B); wa(A); ra(B); wy(B)

v @ ©)

CSE 444 - Winter 2017 31



Example 1

N

ry(A); r1(B); wy(A); ra(A); wq(B); wa(A); ra(B); wy(B)

This schedule is conflict-serializable

CSE 444 - Winter 2017 32




Example 2

ry(A); r1(B); wy(A); ra(B); ra(A); wy(B); wi(A); wy(B)

v @ ©)

CSE 444 - Winter 2017 33



Example 2

T

ry(A); r1(B); wy(A); ra(B); ra(A); wy(B); wi(A); wy(B)

This schedule is NOT conflict-serializable

CSE 444 - Winter 2017 34




View Equivalence

* A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

W;(X); Wa(X); Wa(Y); Wq(Y); Wa(Y);

|s this schedule conflict-serializable ?

CSE 444 - Winter 2017

35



View Equivalence

* A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

W;(X); Wa(X); Wa(Y); Wq(Y); Wa(Y);

|s this schedule conflict-serializable ? No. ..

CSE 444 - Winter 2017



View Equivalence

* A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

W;(X); Wa(X); Wo(Y); Wq(Y); Wa(Y);

W4(X); W4(Y); Wo(X); Wo(Y); Ws(Y);

Equivalent, but not conflict-equivalent

37



View Equivalence

T1 2 13

W1(X)
W2(X)
W2(Y)
CO2
WA(Y)

CO1
W3(Y)

CO3

=)

T1 T2 T3

W1(X)
WA(Y)
CO1
W2(X)
W2(Y)
CO2
W3(Y)
CO3

Serializable, but not conflict serializable

38



View Equivalence

Two schedules S, S’ are view equivalent if:

 |f T reads an initial value of Ain S,
then T reads the initial value of Ain S’

 If T reads a value of A written by T" Iin S,
then T reads a value of A written by T" in S’

o |f T writes the final value of Ain S,
then T writes the final value of Ain §’

CSE 444 - Winter 2017

39



View-Serializability

A schedule is view serializable if it Is view
equivalent to a serial schedule

Remark:

* If a schedule is conflict serializable,
then it is also view serializable

« But not vice versa

CSE 444 - Winter 2017

40



Schedules with Aborted Transactions

 When a transaction aborts, the recovery
manager undoes its updates

* But some of its updates may have affected
other transactions !

CSE 444 - Winter 2017 41



Schedules with Aborted Transactions

T1 T2
R(A)
W(A)
R(A)
W(A) _Whatswrong?
R(B)
W(B)
Commit

Abort

CSE 444 - Winter 2017 42



Schedules with Aborted Transactions

T1 T2
R(A)
W(A)
R(A)
W(A) _Whatswrong?
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2




Recoverable Schedules

A schedule is recoverable if:
 |tis conflict-serializable, and

« Whenever a transaction T commits, all
transactions who have written elements read
by T have already committed

CSE 444 - Winter 2017 44



Recoverable Schedules

T1 T2

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)
Commit

Nonrecoverable

T1 T2

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)

Commit
Commit

Recoverable

CSE 444 - Winter 2017

45



Recoverable Schedules

T1 T2 T3 T4
R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)
R(C)
W(C)
R(C)
W(C)
R(D)
W(D)
Abort

How do we recover ?

46



Cascading Aborts

 If a transaction T aborts, then we need to
abort any other transaction T that has read
an element written by T

* A schedule avoids cascading aborts if
whenever a transaction reads an element, the
transaction that has last written it has already

committed.

CSE 444 - Winter 2017 47



Avoiding Cascading Aborts

T1 T2 T1 T2
W) W)
R(A) Commit
W(A) R(A)
R(B) W(A)
W(B) R(B)

W(B)

With cascading aborts Without cascading aborts

CSE 444 - Winter 2017 48



Review of Schedules

Serializability Recoverability
« Serial

« Serializable * Recoverable

» Conflict serializable * Avoids cascading

. View serializable deletes

CSE 444 - Winter 2017 49



Scheduler

The scheduler:

Module that schedules the transaction’s actions,
ensuring serializability

Two main approaches

Pessimistic: locks
Optimistic: timestamps, multi-version, validation

CSE 444 - Winter 2017 50



