CSE 444: Database Internals

Lecture 12
Query Optimization (part 3)

Acknowledgments

Today's lecture focuses on how to actually implement the Selinger optimizer

Designed to help you with Lab 5

Many slides from Sam Madden at MIT

Selinger Optimizer

Problem:

- How to order a series of joins over N tables A, B, C, \ldots
E.g. A.a = B.b AND A.c=D.d AND B.e=C.f
- N! ways to order joins; e.g. ABCD, ACBD,
- $C_{N-1}=\frac{1}{N}\binom{2(N-1)}{N-1}$ plans/ordering; e.g. (((AB)C)D), ((AB)(CD)))
- Multiple implementations (hash, nested loops)
- Naïve approach does not scale
- E.g. $\mathrm{N}=20$, \#join orders $20!=2.4 \times 10^{18}$; many more plans

Selinger Optimizer

- Only left-deep plan: (((AB)C)D) - eliminate $\mathrm{C}_{\mathrm{N}-1}$.
- Push down selections
- Don't consider cartesian products
- Dynamic programming algorithm

Dynamic Programming

OrderJoins:
$\mathrm{R}=$ set of relations to join
For $\mathrm{d}=1$ to N : $/$ * where $\mathrm{N}=|\mathrm{R}|$ */
For S in \{all size-d subsets of R \}:

optjoin(S) = (S a) join a,
where a is the single relation that minimizes:
$\operatorname{cost(optjoin(S~-~a))~}+\underset{\substack{\text { Use: } \\ \text { computerCostAndCardofsubplan }}}{\text { and }}$
min.cost to join $(S-a)$ with $a+$
min.access cost for a

Note: optjoin(S-a) is cached from previous iterations

Example

- orderJoins(A, B, C, D)

Subplan S	optJoin(S)	$\operatorname{Cost}($ OptJoin(S))
A		

- Assume all joins are NL

Example

- orderJoins(A, B, C, D)
- Assume all joins are NL
- $d=1$

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
C	Seq scan	120
D	B+tree scan	400

- A = best way to access A (sequential scan, predicate-pushdown on index, etc)
- $B=$ best way to access B
- C = best way to access C
- $D=$ best way to access D
- Total number of steps: choose($\mathrm{N}, 1$)

Example

- orderJoins(A, B, C, D)
- $d=2$
$-\{A, B\}=A B$ or $B A$ use previously computed best way to access A and B

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
\ldots		

Example

- orderJoins(A, B, C, D)
- $d=2$
$-\{A, B\}=A B$ or $B A$ use previously computed best way to access A and B

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
\ldots		
$\{$ A, B $\}$	BA	156

Example

- orderJoins(A, B, C, D)
- $d=2$
$-\{A, B\}=A B$ or $B A$ use previously computed best way to access A and B

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
\ldots		
$\{A, B\}$	BA	156
$\{B, C\}$	BC	98

$-\{B, C\}=B C$ or $C B$

Example

- orderJoins(A, B, C, D)
- $d=2$
$-\{A, B\}=A B$ or $B A$ use previously computed best way to access A and B

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
\ldots		
\{A, B $\}$	BA	156
$\{$ B, C $\}$	BC	98

$-\{B, C\}=B C$ or $C B$

Example

- orderJoins(A, B, C, D)
- $d=2$
$-\{A, B\}=A B$ or BA use previously computed best way to access A and B

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
\ldots		
$\{A, B\}$	BA	156
$\{B, C\}$	BC	98
$\ldots \ldots .$.		

$-\{B, C\}=B C$ or $C B$

- $\{\mathrm{C}, \mathrm{D}\}=\mathrm{CD}$ or DC
$-\{A, C\}=A C$ or $C A$
- $\{B, D\}=B D$ or $D B$
$-\{A, D\}=A D$ or $D A$

Example

- orderJoins(A, B, C, D)
- $d=2$
$-\{A, B\}=A B$ or $B A$ use previously computed best way to access A and B

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
\ldots		
$\{A, B\}$	BA	156
$\{B, C\}$	BC	98
$\ldots \ldots .$.		

$-\{B, C\}=B C$ or $C B$

- $\{\mathrm{C}, \mathrm{D}\}=\mathrm{CD}$ or DC
$-\{A, C\}=A C$ or $C A$
- $\{B, D\}=B D$ or $D B$
- \{A,D\} = AD or DA
- Total number of steps: choose $(\mathrm{N}, 2) \times 2$

Example

- orderJoins(A, B, C, D)
- $d=3$
- $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}=$

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
\ldots.		
$\{A, B\}$	BA	156
$\{B, C\}$	BC	98
\ldots		

Remove A: compare A(\{B,C\}) to (\{B,C\})A

Example

- orderJoins(A, B, C, D)
- $d=3$
- $\{A, B, C\}=$

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
\ldots.		
$\{A, B\}$	BA	156
$\{B, C\}$	BC	98
\ldots		

Remove A: compare $A([\bar{B}, C\}]$ to $(\{B, C\}) A$
optJoin(B,C) and its cost are already cached in table

Example

- orderJoins(A, B, C, D)
- $d=3$
- $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}=$

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
$\ldots .$.		
$\{A, B\}$	BA	156
$\{B, C\}$	BC	98
\ldots.		
$\{A, B, C\}$	BAC	500
$\ldots \ldots .$.		

Remove A: compare $A([\overline{B, C\}}]$ to $(\{B, C\}) A$ Remove B: compare $B(\{\bar{A}, \mathrm{C}\})$ to $(\{\mathrm{A}, \mathrm{C}\}) \mathrm{B}$ Remove C: compare C(\{A,B\}) to (\{A,B\})C
optJoin(B,C) and its cost are already cached in table

Example

- orderJoins(A, B, C, D)
- $d=3$
- $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}=$

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
\ldots.		
$\{A, B\}$	BA	156
$\{B, C\}$	BC	98
\ldots		
$\{A, B, C\}$	BAC	500
$\ldots \ldots .$.		

Remove A: compare $A([\overline{B, C}\}]$ to $(\{B, C\}) A$ Remove B: compare $B(\{\bar{A}, \mathrm{C}\})$ to $(\{\mathrm{A}, \mathrm{C}\}) \mathrm{B}$ Remove C: compare C(\{A,B\}) to (\{A,B\})C
optJoin(B,C) and its cost are already cached in table

Example

- orderJoins(A, B, C, D)
- $d=3$

$-\{A, C, D\}=\ldots$
- $\{B, C, D\}=\ldots$
- Total number of steps: choose $(\mathrm{N}, 3) \times 3 \times 2$

Example

- orderJoins(A, B, C, D)
- $d=4$
$-\{A, B, C, D\}=$

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Index scan	100
B	Seq. scan	50
$\{A, B\}$	BA	156
$\{B, C\}$	BC	98
$\{A, B, C\}$	BAC	500
$\{B, C, D\}$	DBC	150
$\ldots \ldots .$.		

Remove A: compare $A\{B, C, D\})$ to $(\{B, C, D\}) A$ Remove B: compare B(\{A,C,D\}) to (\{A,C,D\})B Remove C: compare C(\{A,B,D\}) to (\{A,B,D\})C Remove D: compare $D(\{A, B, C\})$ to $(\{A, B, C\}) D$
optJoin(B, C, D) and its cost are already cached in table

- Total number of steps: choose $(\mathrm{N}, 4) \times 4 \times 2$

Complexity

- Total \#subsets considered
- Choose($\mathrm{N}, 1$) + Choose($\mathrm{N}, 2$) + + Choose (N, N)
- All nonempty subsets of a size N set: $2^{N}-1$
- Equivalently: number of binary strings of size N , except 00... 0 : $000,001,010,011,100,101,110,111$

Complexity

- Total \#subsets considered
- Choose($\mathrm{N}, 1$) + Choose ($\mathrm{N}, 2$) $+\ldots . .+$ Choose (N, N)
- All nonempty subsets of a size N set: $2^{N}-1$
- Equivalently: number of binary strings of size N , except $00 . . .0$: 000, 001, 010, 011, 100, 101, 110, 111
- For each subset of size d:
- d ways to remove one element
- 2 ways for compute AB or BA (except when d=2, when we already accounted for that - why?)

Complexity

- Total \#subsets considered
- Choose($\mathrm{N}, 1$) + Choose($\mathrm{N}, 2$) + + Choose (N, N)
- All nonempty subsets of a size N set: $2^{N}-1$
- Equivalently: number of binary strings of size N , except $00 . . .0$: $000,001,010,011,100,101,110,111$
- For each subset of size d:
- d ways to remove one element
- 2 ways for compute AB or BA (except when d=2, when we already accounted for that - why?)
- Total \#plans considered
- Choose(N, 1) + 2 Choose($\mathrm{N}, 2$) $+\ldots . .+\mathrm{N}$ Choose (N, N)
- Equivalently: total number of 1 's in all strings of size N
- $\mathrm{N} 2^{\mathrm{N}-1}$ because every 1 occurs $2^{\mathrm{N}-1}$ times
- Need to further multiply by 2 , to account for AB or BA

Interesting Orders

- Some query plans produce data in sorted order
- E.g scan over a primary index, merge-join
- Called interesting order
- Next operator may use this order
- E.g. can be another merge-join
- For each subset of relations, compute multiple optimal plans, one for each interesting order
- Increases complexity by factor $k+1$, where $k=n u m b e r ~ o f ~$ interesting orders

Why Left-Deep

Asymmetric, cost depends on the order

- Left: Outer relation Right: Inner relation
- For nested-loop-join, we try to load the outer (typically smaller) relation in memory, then read the inner relation one page at a time
$B(R)+B(R) * B(S)$ or $B(R)+B(R) / M$ * $B(S)$
- For index-join,
we assume right (inner) relation has index

Why Left-Deep

- Advantages of left-deep trees?

1. Fits well with standard join algorithms (nested loop, one-pass), more efficient
2. One pass join: Uses smaller memory
3. ((R, $S), T)$, can reuse the space for R while joining (R, S) with T
4. ($R,(S, T)$): Need to hold R, compute (S, T), then join with R, worse if more relations
5. Nested loop join, consider top-down iterator next()
6. $((R, S), T)$, Reads the chunks of (R, S) once, reads stored base relation T multiple times
7. ($R,(S, T)$): Reads the chunks of R once, reads computed relation (S, T) multiple times, either more time or more space

Implementation in SimpleDB (lab5)

1. JoinOptimizer.java (and the classes used there)
2. Returns vector of "LogicalJoinNode"

Two base tables, two join attributes, predicate
e.g. R(a, b), S(c, d), T(a, f), U(p, q)
(R, S, R.a, S.c, =)
Recall that SimpleDB keeps all attributes of R, S after their join R.a, R.b, S.c, S.d

3. Output vector looks like:
<(R, S, R.a, S.c), (R, T, R.b, T.f), (S, U, S.d, U.q)>

Implementation in SimpleDB (lab5)

Any advantage of returning pairs?

- Flexibility to consider all linear plans
<(R, S, R.a,S.c), (R, T, R.b, T.f), (U, S, U.q, S.d)>

More Details:

1. You mainly need to implement "orderJoins(..)"
2. "CostCard" data structure stores a plan, its cost and cardinality: you would need to estimate them
3. "PlanCache" stores the table in dyn. Prog: Maps a set of LJN to
a vector of LJN (best plan for the vector),

its cost, and its cardinality
LJN = LogicalJoinNode
