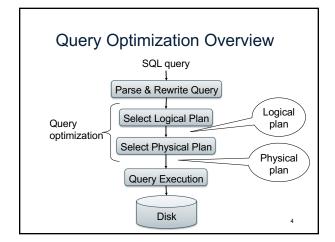
CSE 444: Database Internals

Lecture 10
Query Optimization (part 1)

CSE 444 - Winter 2017

Reminders

- · HW2 is due tonight
- 5th year master's reading is due tonight
- Lab2 EXTENDED to WEDNESDAY


CSE 444 - Winter 2017

Know how to compute the cost of a plan

Next: Find a good plan automatically?

This is the role of the query optimizer

CSE 444 - Winter 2017

What We Already Know...

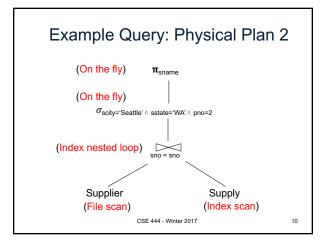
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

For each SQL query....

SELECT S.sname FROM Supplier S, Supply U WHERE S.scity='Seattle' AND S.sstate='WA' AND S.sno = U.sno AND U.pno = 2

There exist many logical query plan...

Example Query: Logical Plan 1 \$\pi_{\text{sname}}\$ \[\sigma_{\text{sname}} \sigma_{\text{sname}} \sigma_{\text{sno} = \text{sno}} \] Supplier Supply CSE 444 - Winter 2017 6


Example Query: Logical Plan 2 $\sigma_{\rm sscity=`Seattle' \, \land \, \, sstate=`WA'}$ Supplier Supply CSE 444 - Winter 2017

What We Also Know

- For each logical plan...
- · There exist many physical plans

CSE 444 - Winter 2017

Example Query: Physical Plan 1 (On the fly) (On the fly) $\sigma_{
m scity=`Seattle'} \land
m sstate=`WA' \land pno=2$ (Nested loop) Supplier Supply (File scan) (File scan) CSE 444 - Winter 2017

Query Optimizer Overview

- · Input: A logical query plan
- Output: A good physical query plan
- · Basic query optimization algorithm
 - Enumerate alternative plans (logical and physical)
 - Compute estimated cost of each plan
 - · Compute number of I/Os
 - · Optionally take into account other resources
 - Choose plan with lowest cost
 - This is called cost-based optimization

CSE 444 - Winter 2017

11

Lessons

- · No magic "best" plan: depends on the data
- · In order to make the right choice
 - Need to have statistics over the data
 - The B's, the T's, the V's
 - Commonly (and in SimpleDB): histograms over base

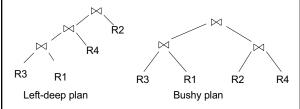
CSE 444 - Winter 2017

12

Outline

- · Search space
- · Algorithm for enumerating query plans

CSE 444 - Winter 2017


Relational Algebra Equivalences

- Selections
 - Commutative: $\sigma_{c1}(\sigma_{c2}(R))$ same as $\sigma_{c2}(\sigma_{c1}(R))$
 - Cascading: $\sigma_{c1 \land c2}(R)$ same as $\sigma_{c2}(\sigma_{c1}(R))$
- Projections
 - Cascading
- Joins
 - Commutative : $R \bowtie S$ same as $S \bowtie R$
 - Associative: R \bowtie (S \bowtie T) same as (R \bowtie S) \bowtie T $_{\text{CSE 444 Winter 2017}}$

14

16

Left-Deep Plans, Bushy Plans, and Linear Plans

Linear plan: One input to each join is a relation from disk Can be either left or right input

CSE 444 - Winter 2017

15

Assuming C on

Commutativity, Associativity, Distributivity

 $R \cup S = S \cup R$, $R \cup (S \cup T) = (R \cup S) \cup T$ $R \bowtie S = S \bowtie R$, $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$

 $R \bowtie (S \cup T) = (R \bowtie S) \cup (R \bowtie T)$

CSE 444 - Winter 2017

Laws Involving Selection

$$\sigma_{CANDC'}(R) = \sigma_{C}(\sigma_{C'}(R)) = \sigma_{C}(R) \cap \sigma_{C'}(R)$$

$$\sigma_{CORC'}(R) = \sigma_{C}(R) \cup \sigma_{C'}(R)$$

$$\sigma_{C}(R \bowtie S) = \sigma_{C}(R) \bowtie S$$

$$\sigma_{C}(R - S) = \sigma_{C}(R) - S$$

 $\sigma_{C}(R \cup S) = \sigma_{C}(R) \cup \sigma_{C}(S)$
 $\sigma_{C}(R \bowtie S) = \sigma_{C}(R) \bowtie S$

CSE 444 - Winter 2017

Example: Simple Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G)

 $\sigma_{F=3}(R\bowtie_{D=E}S)=$

 $\sigma_{A=5 \text{ AND G}=9} (R \bowtie_{D=E} S) =$?

CSE 444 - Winter 2017

Example: Simple Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G) $\sigma_{F=3}(R\bowtie_{D=E}S) = R\bowtie_{D=E}\sigma_{F=3}(S)$ $\sigma_{A=5\;AND\;G=9}(R\bowtie_{D=E}S) = \sigma_{A=5}(R)\bowtie_{D=E}\sigma_{G=9}(S)$

CSE 444 - Winter 2017

Laws Involving Projections

 $\Pi_{\mathsf{M}}(\mathsf{R}\bowtie\mathsf{S})=\Pi_{\mathsf{M}}(\Pi_{\mathsf{P}}(\mathsf{R})\bowtie\Pi_{\mathsf{Q}}(\mathsf{S}))$

$$\Pi_{M}(\Pi_{N}(R)) = \Pi_{M}(R)$$
/* note that M \subseteq N */

• Example R(A,B,C,D), S(E, F, G) $\Pi_{A,B,G}(R\bowtie_{D=E}S) = \Pi_{?}(\Pi_{?}(R)\bowtie_{D=E}\Pi_{?}(S))$

CSE 444 - Winter 2017

-00

22

Laws Involving Projections

$$\Pi_{M}(R \bowtie S) = \Pi_{M}(\Pi_{P}(R) \bowtie \Pi_{Q}(S))$$

 $\Pi_{M}(\Pi_{N}(R)) = \Pi_{M}(R)$ /* note that M \subseteq N */

• Example R(A,B,C,D), S(E, F, G) $\Pi_{A,B,G}(R\bowtie_{D=E}S) = \Pi_{A,B,G}(\Pi_{A,B,D}(R)\bowtie_{D=E}\Pi_{E,G}(S))$

CSE 444 - Winter 2017

21

Laws involving grouping and aggregation

 $\gamma_{A, \text{ agg}(D)}(R(A,B) \bowtie_{B=C} S(C,D)) = \gamma_{A, \text{ agg}(D)}(R(A,B) \bowtie_{B=C} (\gamma_{C, \text{ agg}(D)}S(C,D)))$

CSE 444 - Winter 2017

Laws involving grouping and aggregation

$$\delta(\gamma_{A, \text{agg}(B)}(R)) = \gamma_{A, \text{agg}(B)}(R)$$

 $\gamma_{A, agg(B)}(\delta(R)) = \gamma_{A, agg(B)}(R)$ if agg is "duplicate insensitive"

Which of the following are "duplicate insensitive"? sum, count, avg, min, max

CSE 444 - Winter 2017

Laws Involving Constraints

Foreign key

Product(<u>pid</u>, pname, price, cid) Company(<u>cid</u>, cname, city, state)

 $|\Pi_{\text{pid, price}}(\text{Product} \bowtie_{\text{cid=cid}} \text{Company}) = \Pi_{\text{pid, price}}(\text{Product})|$

CSE 444 - Winter 2017

1

Search Space Challenges

- · Search space is huge!
 - Many possible equivalent trees
 - Many implementations for each operator
 - Many access paths for each relation
 - · File scan or index + matching selection condition
- · Cannot consider ALL plans
 - Heuristics: only partial plans with "low" cost

CSE 444 - Winter 2017

27

Outline

- · Search space
- · Algorithm for enumerating query plans

CSE 444 - Winter 2017

Key Decisions

Logical plan

- · What logical plans do we consider (left-deep, bushy?); Search Space
- · Which algebraic laws do we apply, and in which context(s)?; Optimization rules
- In what order do we explore the search space?; Optimization algorithm

CSE 444 - Winter 2017

Key Decisions

Physical plan

- · What physical operators to use?
- · What access paths to use (file scan or index)?
- · Pipeline or materialize intermediate results?

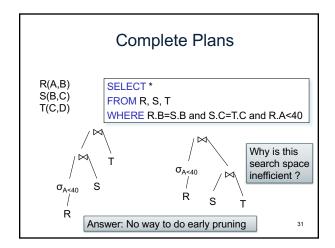
These decisions also affect the search space

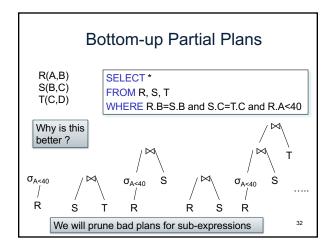
CSE 444 - Winter 2017

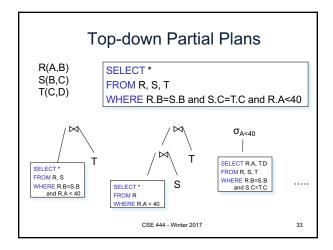
28

Two Types of Optimizers

- · Heuristic-based optimizers:
 - Apply greedily rules that always improve plan
 - Typically: push selections down
 - Very limited: no longer used today
- · Cost-based optimizers:
 - Use a cost model to estimate the cost of each plan
 - Select the "cheapest" plan
 - We focus on cost-based optimizers


CSE 444 - Winter 2017


Three Approaches to Search **Space Enumeration**


- · Complete plans
- · Bottom-up plans
- · Top-down plans

CSE 444 - Winter 2017

30

Two Types of Plan Enumeration Algorithms

- Dynamic programming (in class)
 - Based on System R (aka Selinger) style optimizer[1979]
 - Limited to joins: join reordering algorithm
 - Bottom-up
- Rule-based algorithm (will not discuss)
 - Database of rules (=algebraic laws)
 - Usually: dynamic programming
 - Usually: top-down

CSE 444 - Winter 2017 34