CSE 444: Database Internals

Lecture 9
Query Plan Cost Estimation

Query Optimization Summary

Goal: find a physical plan that has minimal cost

What is the cost of a plan?
For each operator, cost is function of CPU, IO, network bw
Total_Cost $=$ CPUCost $+\mathrm{w}_{\text {IO }}$ IOCost $+\mathrm{w}_{\text {BW }}$ BWCost
Cost of plan is total for all operators
In this class, we look only at IO

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities
$-\mathrm{Eg} . \operatorname{Cost}(\mathrm{V} \bowtie T)=3 \mathrm{~B}(\mathrm{~V})+3 \mathrm{~B}(\mathrm{~T})$
$-B(V)=T(V) /$ PageSize
$-T(V)=T(\sigma(R) \bowtie S)$

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

$$
\begin{aligned}
& - \text { Eg. } \operatorname{Cost}(V \bowtie T)=3 B(V)+3 B(T) \\
& -B(V)=T(V) / \text { PageSize } \\
& -T(V)=T(\sigma(R) \bowtie S)
\end{aligned}
$$

Cardinality estimation problem: e.g. estimate $T(\sigma(R) \bowtie S)$

Database Statistics

- Collect statistical summaries of stored data
- Estimate size (=cardinality) in a bottom-up fashion
- This is the most difficult part, and still inadequate in today's query optimizers
- Estimate cost by using the estimated size
- Hand-written formulas, similar to those we used for computing the cost of each physical operator

Database Statistics

- Number of tuples (cardinality) T(R)
- Indexes, number of keys in the index $V(R, a)$
- Number of physical pages B(R)
- Statistical information on attributes
- Min value, Max value, V(R,a)
- Histograms
- Collection approach: periodic, using sampling

Size Estimation Problem

$$
\begin{aligned}
Q= & \text { SELECT list } \\
& \text { FROM R1, ... Rn } \\
& \text { WHERE cond }{ }_{1} \text { AND cond }{ }_{2} \text { AND } \ldots \text { AND cond }_{k}
\end{aligned}
$$

Given T(R1), T(R2), ..., T(Rn)
Estimate T(Q)
How can we do this ? Note: doesn't have to be exact.

Size Estimation Problem

Q = SELECT list

Remark: $T(Q) \leq T(R 1) \times T(R 2) \times \ldots \times T(R n)$

Size Estimation Problem

$$
\begin{aligned}
Q= & \text { SELECT list } \\
& \text { FROM R1, ... Rn } \\
& \text { WHERE cond }{ }_{1} \text { AND cond }{ }_{2} \text { AND } \ldots \text { AND cond }_{k}
\end{aligned}
$$

$$
\text { Remark: } T(Q) \leq T(R 1) \times T(R 2) \times \ldots \times T(R n)
$$

Key idea: each condition reduces the size of T(Q) by some factor, called selectivity factor

Selectivity Factor

- Each condition cond reduces the size by some factor called selectivity factor
- Assuming independence, multiply the selectivity factors

Example

$R(A, B)$	$Q=$ SELECT *
$S(B, C)$	FROM R, S, T
T(C,D)	WHERE R.B=S.B and $S . C=T . C$ and $R . A<40$

$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B $=S . B$ is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$
Selectivity of R.A <40 is $1 / 2$
Q : What is the estimated size of the query output $T(Q)$?

Example

$R(A, B) \quad Q=S E L E C T$ * FROM R, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A <40
$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B $=S . B$ is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$
Selectivity of R.A <40 is $1 / 2$
Q : What is the estimated size of the query output $\mathrm{T}(\mathrm{Q})$?

$$
A: T(Q)=30 k * 200 k * 10 k * 1 / 3 * 1 / 10 * 1 / 2=10^{12}
$$

Selectivity Factors for Conditions

- $A=C$

$$
/^{*} \sigma_{\mathrm{A}=\mathrm{c}}(\mathrm{R}) * /
$$

- Selectivity $=1 / V(R, A)$

Selectivity Factors for Conditions

- $A=C$

$$
/^{*} \sigma_{\mathrm{A}=\mathrm{c}}(\mathrm{R}) * /
$$

- Selectivity $=1 / V(R, A)$
- $\mathrm{A}<\mathrm{C} \quad /^{*} \sigma_{\mathrm{A}<\mathrm{c}}(\mathrm{R})^{*} /$
- Selectivity $=(c-\operatorname{Low}(R, A)) /(\operatorname{High}(R, A)-\operatorname{Low}(R, A))$

Selectivity Factors for Conditions

- $A=C$

$$
/^{*} \sigma_{A=c}(R) * /
$$

- Selectivity $=1 / V(R, A)$
- $\mathrm{A}<\mathrm{C}$

$$
/ * \sigma_{A<c}(R)^{*} /
$$

- Selectivity $=(c-\operatorname{Low}(R, A)) /(\operatorname{High}(R, A)-\operatorname{Low}(R, A))$
- $A=B$

$$
/ * R \bowtie_{A=B} S * /
$$

- Selectivity $=1 / \max (\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{A}))$
- (will explain next)

Assumptions

- Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$, then all values R.A occur in S.B
- Note: this indeed holds when A is a foreign key in R, and B is a key in S
- Preservation of values: for any other attribute C , $V\left(R \bowtie_{A=B} S, C\right)=V(R, C) \quad(o r V(S, C))$
- Note: we don't need this to estimate the size of the join, but we need it in estimating the next operator

Selectivity of $R \bowtie_{A=B} S$

Assume $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$

- A tuple t in R joins with $T(S) / V(S, B)$ tuple(s) in S
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$

$$
T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))
$$

Size Estimation for Join

Example:

- $T(R)=10000, T(S)=20000$
- $V(R, A)=100, V(S, B)=200$
- How large is $R \bowtie_{A=B} S$?
(In class...)

Complete Example

Supplier(sid, sname, scity, sstate) Supply(sid, pno, quantity)

- Some statistics
- T(Supplier) = 1000 records
- T(Supply) = 10,000 records
- B(Supplier) = 100 pages
- B(Supply) = 100 pages
- V (Supplier,scity) $=20, \mathrm{~V}$ (Suppliers,state $)=10$
- V (Supply,pno) $=2,500$
- Both relations are clustered
- $M=11$

Computing the Cost of a Plan

- Estimate cardinality in a bottom-up fashion
- Cardinality is the size of a relation (nb of tuples)
- Compute size of all intermediate relations in plan
- Estimate cost by using the estimated cardinalities

Physical Query Plan 1

(On the fly)
$\boldsymbol{\pi}_{\text {sname }}$
Selection and project on-the-fly
-> No additional cost.
(On the fly)
$\sigma_{\text {scity='Seattle' }} \wedge$ sstate='WA' \wedge pno=2
(Nested loop)

Supplier
(File scan)

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)
$=100+100$ * 100
$=10,100 \mathrm{I} / \mathrm{Os}$
Supply
(File scan)

Physical Query Plan 2

(On the fly)
(Sort-merge join)
$\boldsymbol{\pi}_{\text {sname }}$
(d)

Total cost
$=100+100 * 1 / 20 * 1 / 10(a)$
$+100+100 * 1 / 2500(b)$
+2 (c)
+0 (d)
(Scan
write to T1)
(a) $\sigma_{\text {scity }}=$ 'Seattle' \wedge sstate $=$ 'WA'
(b) $\sigma_{\text {pno }=2}^{\text {write to T2) }}$

Supplier
(File scan)

Supply

(File scan)

Plan 2 with Different Numbers

Supplier
(File scan)
(d)

Total cost
$=10000+50(\mathrm{a})$
$+10000+4(\mathrm{~b})$
$+3^{*} 50+4(\mathrm{c})$
$+0(\mathrm{~d})$

Supply
Need to do a twopass sort algorithm

Physical Query Plan 3

(On the fly) (d) $\boldsymbol{\pi}_{\text {sname }}$
 Total cost

(On the fly)
$=1$ (a)
+4 (b)
(c) $\sigma_{\text {scity }}=$ 'Seattle' \wedge sstate $=$ 'WA'
+0 (c)
+0 (d)
Total cost ≈ 5 I/Os (Index nested loop)
(Use hash index) 4 tuples
(a) $\sigma_{\mathrm{pno}}=2$

Supply
(Hash index on pno) (Hash index on sno)
Assume: clustered Clustering does not matter

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$
$\sigma_{\text {age }=48}($ Empolyee $)=? \quad \sigma_{\text {age }>28 \text { and age }<35}($ Empolyee $)=?$

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Estimate $=25000 / 50=500$ Estimate $=25000 * 6 / 50=3000$

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\mathrm{age}>28 \text { and age }<35}(\text { Empolyee })=?
$$

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\mathrm{age}>28 \text { and age }<35}(\text { Empolyee })=?
$$

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500
Estimate $=1 * 80+5 * 500=2580 \quad 32$						

Types of Histograms

- How should we determine the bucket boundaries in a histogram?

Types of Histograms

- How should we determine the bucket boundaries in a histogram?
- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

Employee(ssn, name, age) Histograms

Eq-width:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	$0 . .33$	$33 . .38$	$38-43$	$43-45$	$45-54$	>54
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: $(48,1900)$

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use V-optimal histograms or some variations

Difficult Questions on Histograms

- Small number of buckets
- Hundreds, or thousands, but not more
- WHY ?
- Not updated during database update, but recomputed periodically
- WHY?
- Multidimensional histograms rarely used
- WHY?

Difficult Questions on Histograms

- Small number of buckets
- Hundreds, or thousands, but not more
- WHY? All histograms are kept in main memory during query optimization; plus need fast access
- Not updated during database update, but recomputed periodically
- WHY? Histogram update creates a write conflict; would dramatically slow down transaction throughput
- Multidimensional histograms rarely used
- WHY? Too many possible multidimensional histograms, unclear which ones to choose

