CSE 444: Database Internals

Lectures 5-6
Indexing

CSE 444 - Winter 2017 1

Announcements

* HW1 due tonight by 11pm
— Turn in an electronic copy (word/pdf) by 11pm, or
— Turn in a hard copy after class or during office hour.

» Lab1 is due on Wednesday, 11pm
— Do not fall behind on labs! Labs build on each other

+ 544M first reading due tonight... but flexible
* HW2 has been released

CSE 444 - Winter 2017 2

Basic Access Method: Heap File

API

+ Create or destroy a file

* Insert a record

» Delete a record with a given rid (rid)
— rid: unique tuple identifier (more later)

* Get a record with a given rid

— Not necessary for sequential scan operator
— But used with indexes

* Scan all records in the file

CSE 444 - Winter 2017 3

But Often Also Want....

+ Scan all records in the file that match a
predicate of the form attribute op value
— Example: Find all students with GPA > 3.5

+ Critical to support such requests efficiently

— Why read all data form disk when we only need a
small fraction of that data?

* This lecture and next, we will learn how

CSE 444 - Winter 2017 4

Searching in a Heap File

File is not sorted on any attribute
Student (sid: int, age: int, ..)

8 1 record

o
o
Q
[}

CSE 444 - Winter 2017 5

Heap File Search Example

* 10,000 students
» 10 student records per page
» Total number of pages: 1,000 pages
+ Find student whose sid is 80
— Must read on average 500 pages

Find all students older than 20
— Must read all 1,000 pages

» Can we do better?

CSE 444 - Winter 2017 6

Sequential File

File sorted on an attribute, usually on primary key
Student (sid: int, age: int, ..)

0

Sequential File Example

Total number of pages: 1,000 pages
Find student whose sid is 80
— Could do binary search, read log,(1,000) = 10 pages

Find all students older than 20
— Must still read all 1,000 pages
Can we do even better?

Note: Sorted files are inefficient for inserts/deletes

CSE 444 - Winter 2017 8

.

.

Indexes

Index: data structure that organizes data records on disk to
optimize selections on the search key fields for the index

An index contains a collection of data entries, and supports
efficient retrieval of all data entries with a given search key value k

Indexes are also access methods!
— So they provide the same API as we have seen for Heap Files
— And efficiently support scans over tuples matching predicate on search key

CSE 444 - Winter 2017 10

CSE 444 - Winter 2017 7
Outline
* Index structures } Tod
oqQa
» Hash-based indexes y
* B+ trees } Next time
CSE 444 - Winter 2017 9
Indexes

Search key = can be any set of fields
— not the same as the primary key, nor a key
Index = collection of data entries

Data entry for key k can be:
— The actual record with key k

« In this case, the index is also a special file organization
« Called: “indexed file organization”

— (k, RID)
— (k, list-of-RIDs)

CSE 444 - Winter 2017 11

Different Types of Files

For the data inside base relations:

— Heap file (tuples stored without any order)

— Sequential file (tuples sorted some attribute(s))
— Indexed file (tuples organized following an index)
Then we can have additional index files that
store (key,rid) pairs

Index can also be a “covering index”

— Index contains (search key + other attributes, rid)
— Index suffices to answer some queries

CSE 444 - Winter 2017 12

Primary Index

» Primary index determines location of indexed records
» Dense index: sequence of (key,rid) pairs

Index File Data File (Sequential file)
— —_—

1 dataentry — 0

0

T

E)

)

E)
E)
1 page -
0

fll Il

yAVARII]

CSE 444 - Winter 2017 13

Primary Index

» Sparse index

EY -
50

ﬁﬁ

%

0
130
150

CSE 444 - Winter 2017 14

Primary Index
with Duplicate Keys

» Sparse index: pointer to lowest search key on
each page: Example search for 20

T N
OIS N
:

:

...but
need to
search
here too

ﬁ

CSE 444 - Winter 2017 15

Primary Index
with Duplicate Keys

» Better: pointer to lowest new search key on
each page:

[IAN

)
o = ..ok to
search

= from here

CSE 444 - Winter 2017 16

Primary Index
with Duplicate Keys

* Dense index:

CSE 444 - Winter 2017 17

Primary Index: Back to Example
+ Let's assume all pages of index fit in memory

+ Find student whose sid is 80
— Index (dense or sparse) points directly to the page
— Only need to read 1 page from disk.

* Find all students older than 20
— Must still read all 1,000 pages.

* How can we make both queries fast?

CSE 444 - Winter 2017 18

Clustered vs.

Secondary Indexes Unclustered Index

* To index other attributes than primary key
» Always dense (why ?)

Data entries

Data entries

X ST S e i

Data Records

2 | pra Data Records
— CLUSTERED UNCLUSTERED
B |1 Clustered = records close in index are close in data
CSE 444 - Winter 2017 19 CSE 444 - Winter 2017 20
Clustered/Unclustered Secondary Indexes
» Primary index = clustered by definition » Applications
- Secondary indexes = usually unclustered — Index other attributes than primary key
— Index unsorted files (heap files)
— Index files that hold data from two relations
« Called “clustered file”
« Notice the different use of the term “clustered”!
CSE 444 - Winter 2017 21 CSE 444 - Winter 2017 22
Index Classification Summary Large Indexes
Primary/secondary
— Primary = determines the location of indexed records « \What if index does not fit in memory?
— Secondary = cannot reorder data, does not determine data location
Dense/sparse . o * Would like to index the index itself
— Dense = every key in the data appears in the index .
— Sparse = the index contains only some keys — Hash-based index

— Tree-based index
Clustered/unclustered

— Clustered = records close in index are close in data
— Unclustered = records close in index may be far in data

B+ tree / Hash table / ...

CSE 444 - Winter 2017 23 CSE 444 - Winter 2017 24

Hash-Based Index Tree-Based Index

Good for point queries but not range queries

h2(age) = 00 * How many index levels do we need?
. R h1(sid) = 00 + Can we create them automatically? Yes!
= | = .
age = % T « Can do something even more powerful!
w T
h2(age) = 01 :’ A sid
- h1(sid) = 11
= T=
% =
Secondary
hash-based index Primary hash-based index
CSE 444 - Winter 2017 25 CSE 444 - Winter 2017 26
B+ Trees
B+ Trees
» Search trees
. Data entries
* Ideain B Trees Data entries

— Make 1 node = 1 page (= 1 block) | Hr
— Keep tree balanced in height ﬁ r:| ﬁ [] Dﬁ\ﬁ
Data Records
* Ideain B+ Trees CLUSTERED

— Make leaves into a linked list : facilitates range queries

Index File:

(Daﬂta file) ﬁ)ﬁ\m\ \D D

Data Records

UNCLUSTERED

Note: can also store data records directly as data entries

CSE 444 - Winter 2017 2 CSE 444 - Winter 2017 %
B+ Trees Basics B+ Tree Example
+ Parameter d = the degree 9=2 T e
» Each node has d <= m <= 2d keys (except root) w080 LT []
w [] Each node also w o]] DEIE
//‘i‘ \“\\ has m+1 pointers NI NN

Keys k < 30
eve ks Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k 20\40 < 60 \\

+ Each leaf has d <= m <= 2d keys: R L @[T=]

30 | 40

50

I L]
Sy AADANE =

85 | o0

\
i

\
ERERER INREE FNNNE NN
!n-- Next leaf \ l \
Data records| 40 | [50]| 60| 65](80] [85] [90]

CSE 444 - Winter 2017 29 CSE 444 - Winter 2017 30

Searching a B+ Tree

+ Exact key values:

— Start at the root §e|eCtSf:a(Tet
— Proceed down, to the leaf rom sStuden
Where age = 25

* Range queries:

— Find lowest bound as above Select name
— Then sequential traversal From Student
Where 20 <= age
and age <= 30
CSE 444 - Winter 2017 31

B+ Tree Design

* How larged ?
+ Example:

— Key size = 4 bytes

— Pointer size = 8 bytes

— Block size = 4096 bytes
2d x4 +(2d+1)x 8 <= 4096
d=170

CSE 444 - Winter 2017

B+ Trees in Practice

Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133
» Typical capacities
— Height 4: 1334 = 312,900,700 records
— Height 3: 1333 = 2,352,637 records
« Can often hold top levels in buffer pool
— Level 1= 1page = 8 Kbytes
— Level2= 133 pages= 1 Mbyte
— Level 3 =17,689 pages = 133 Mbytes

CSE 444 - Winter 2017

Insertion in a B+ Tree

Insert (K, P)
Find leaf where K belongs, insert
If no overflow (2d keys or less), halt
If overflow (2d+1 keys), split node, insert in parent:

parent parent
K3
K1 ‘ K2 ‘ K3 ‘ K4 ‘ K5 K1 ‘ K2 ‘ ‘ K4 ‘ K5 ‘ ‘
P\)‘ Pl ‘ P2 ‘ P3 ‘ P4 ‘ ps - PO ‘ P1 ‘ P ‘ ‘ P ‘ P4 ‘ PS5 ‘ ‘
« Ifleaf, also keep K3 in right node
* When root splits, new root has 1 key only
CSE 444 - Winter 2017 34

Insertion in a B+ Tree

Insert K=19
wl []
FLL [1
|zo‘5o‘ ‘ | |100‘\20‘140‘
AREENE \
| 10 ‘ s ‘ is ‘ | 20 [30| 40 | 50 o | 65 50 | 85 | 90
|‘ \ ‘ ‘ / ‘
L1e] [20] [s0][40] L\- 80 é‘
CSE 444 - Winter 2017 35

Insertion in a B+ Tree

After insertion

50 m‘u xﬂ‘xs‘fm

[]
|‘|‘\‘\ K e

St

CSE 444 - Winter 2017 36

\x‘wl 2 30]

Insertion in a B+ Tree
Now insert 25

EN

| 20 ‘ 60 ‘ ‘ | | 100 ‘ 120 ‘ 140 ‘

e s v [m oo =]]= M
I‘l‘\‘\‘ I‘I‘\‘\‘_ |‘\‘ 1 ‘/‘ T™
CSE 444 - Winter 2017 37

Insertion in a B+ Tree

But now have to split !

|20

60

‘ | |10u‘1zﬂ‘14u‘

\

30 ‘ wlso|[w ‘45 ‘ ‘ w0 [s | o

‘\‘\‘_I‘\‘ ‘

\n‘\s‘n«‘w 20

W]

Lto] (15148 T 1s [0][2s][0 0] E- 65 0 é‘

CSE 444 - Winter 2017 39

iy ‘/‘ i

4/—

Insertion in a B+ Tree

After insertion

EXI .

20 | 60 100 | 120 | 140

\

o]] W] o wlo0]@]e S] 5 | %0
I‘I‘\‘\‘_’l‘l‘\‘\‘\‘ |‘\‘ 1 ‘/‘ g
CSE 444 - Winter 2017 38

Insertion in a B+ Tree

After the split
"I T]
L~ [|
0 30 60 100 120 140
0 ‘ s ‘ s ‘ 19 20 | 2 0 |40 | s) ‘4»5 ‘ ‘ 0 ‘ s ‘ 9% ‘
/II\\\'“’]I j "‘ ‘ 'i\ ‘ “" ‘/‘ “"
20 4 - o5][80 é
CSE 444 - Winter 2017 40

Deletion from a B+ Tree
Delete 30

| 100 ‘ m‘ 140 ‘

L I L

0
|zo‘30‘oo‘ |

AINIENEN

m‘w‘sﬂ w |

T
1 []
-LL ao m so

CSE 444 - Winter 2017 41

Deletion from a B+ Tree
After deleting 30

May change to 80 ‘ ‘ ‘
40, or not ‘ \L ‘ ‘
<<

20

100 | 120 | 140

~ \\

o s s [1o u‘ 25 ‘ ||4n ;n‘ ‘ w0 | 65 R

l‘l‘ [H I '|‘\‘ ‘/‘

AL NI éé

CSE 444 - Winter 2017

Deletion from a B+ Tree
Now delete 25

EN

| 100 ‘ 120 ‘ 140 ‘

L I L

AW gz

CSE 444 - Winter 2017

10 .<‘ 18 ‘

L
-
N

[]

¥

l

IR \\

Deletion from a B+ Tree
After deleting 25

Need to rebalance ElE
Rotate

0 30 60 100 120 140
0 |15 | 18 20 ‘ ‘ ‘ a0 ‘ s0 ‘ ‘ 50 | 65 s0 ‘ 85 ‘ % ‘
I‘I‘\‘\‘_’l‘ ‘ ‘ "‘/‘ ‘ ‘ "I‘\‘ '*‘ ‘/‘ ‘—*

ISR ANV

CSE 444 - Winter 2017

44

Deletion from a B+ Tree

Now delete 40
1]
T T
|19‘3U‘{)0‘ | |IDU‘120‘MU‘
L \] |¢\Lk\
0] s | s w‘zo‘ ‘ m‘so‘ ‘ (‘m‘ ‘ m‘u‘m‘
I‘l‘\‘ "’// ‘ “"/‘ ‘ ‘ ‘i\ “’// ‘—"
CSE 444 - Winter 2017 45

Deletion from a B+ Tree
After deleting 40

Rotation not possible =T]

Needtomygen(wde—\\L [1

\o‘u‘u‘ le‘za‘ ‘ sn‘ ‘ ‘ 4»(1‘4»5‘ ‘ xo‘x#‘dn‘
I

ENEE S AP E X E fINEE, A

1
¥

RRWIANN AWy

CSE 444 - Winter 2017

Deletion from a B+ Tree

Final tree

]

=

m‘ﬁ‘wn‘

INENE2ANE

ettt

CSE 444 - Winter 2017 47

]

Summary on B+ Trees

» Default index structure on most DBMSs

+ Very effective at answering ‘point’ queries:
productName = ‘gizmo’

« Effective for range queries:
50 < price AND price < 100

+ Less effective for multirange:
50 < price <100 AND 2 < quant < 20

CSE 444 - Winter 2017

48

+ Let’s take a look at another example of an
index....

Optional Material

CSE 444 - Winter 2017

R-Tree Example

Designed for spatial data :
Search key values are bounding boxes

IERREEN
[a] [

Im/mmsl\l (LI~
[re] [l [re] :

For insertion: at each level, choose child whose bounding box
needs least enlargement (in terms of area)

CSE 444 - Winter 2017 50

