
CSE 444: Database Internals

Section 8:

Parallel Processing

Review in this section

Parallel DBMS

MapReduce

1a. Parallel DBMS
R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N = 3
machines.

Pick an efficient plan that leverages the parallelism as much as possible.

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

If more than one relation on a machine, then “scan S”, “scan R” etc

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

a>0 a>0 a>0

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)-> b a, max(b)-> b a, max(b)-> b

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)-> b a, max(b)-> b a, max(b)-> b

Hash on a Hash on a Hash on a

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)-> b a, max(b)-> b a, max(b)-> b

Hash on a Hash on a Hash on a

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)-> b a, max(b)-> b a, max(b)-> b

Hash on a Hash on a Hash on a

a, max(b)->topb a, max(b)->topb a, max(b)->topb

1b. Map Reduce
Explain how the query will be executed in

MapReduce

SELECT a, max(b) as topb

FROM R

WHERE a > 0

GROUP BY a

Specify the computation performed in the map and
the reduce functions

Map

• Each map task

– Scans a block of R

– Calls the map function for each tuple

– The map function applies the selection predicate to the
tuple

– For each tuple satisfying the selection, it outputs a record
with key = a and value = b

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

•When each map task scans multiple relations, it needs to output something like
key = a and value = (‘R’, b)
which has the relation name ‘R’

Shuffle

• The MapReduce engine reshuffles the output of the
map phase and groups it on the intermediate key, i.e.
the attribute a

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

•Note that the programmer has to write only the map and reduce functions, the
shuffle phase is done by the MapReduce engine (although the programmer can
rewrite the partition function), but you should still mention this in HW6 answers.

Reduce
SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

• Each reduce task

• computes the aggregate value max(b) = topb for each
group (i.e. a) assigned to it (by calling the
reduce function)

• outputs the final results: (a, topb)

• Multiple aggregates can be output by the reduce phase like
key = a and value = (sum(b), min(b)) etc.

• Sometimes a second (third etc) level of Map-Reduce phase might be needed

A local combiner can be used to compute local max
before data gets reshuffled (in the map tasks)

1c. Benefit of hash-partitioning

• What would change if we hash-partitioned R
on R.a before executing this query

– For parallel DBMS

– For MapReduce

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aHash-partition on a for R(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)-> b a, max(b)-> b a, max(b)-> b

Hash on a Hash on a Hash on a

a, max(b)->topb a, max(b)->topb a, max(b)->topb

1c. Benefit of hash-partitioning

• For parallel DBMS

– It would avoid the data re-shuffling phase

– It would compute the aggregates locally

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aHash-partition on a for R(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)->topb a, max(b)->topb a, max(b)->topb

1c. Benefit of hash-partitioning

• For MapReduce
– Logically, MR won’t know that the data is hash-

partitioned
– MR treats map and reduce functions as black-boxes

and does not perform any optimizations on them

• But, if a local combiner is used
– Saves communication cost:

• fewer tuples will be emitted by the map tasks

– Saves computation cost in the reducers:
• the reducers would not have to do anything

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

