CSE 444: Database Internals

Section 8:
Parallel Processing



Review in this section

» Parallel DBMS
» MapReduce



1a. Parallel DBMS

R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N =3
machines.

Pick an efficient plan that leverages the parallelism as much as possible.

SELECT a, max(b) as topb
FROM R

WHERE a >0

GROUP BY a



R(a, b)

SELECT a, max(b) as topb
FROM R

WHERE a>0

GROUP BY a




R(a, b)

SELECT a, max(b) as topb
FROM R

WHERE a >0

GROUP BY a

Machine 1

Machine 2

Machine 3




SELECT a, as topb
R(a, b) FROM R ‘

WHERE a>0
GROUP BY a

Machine 1 Machine 2 Machine 3




SELECT a, max(b) as topb
FROM R

WHERE a>0
GROUP BY) a

R(a, b)

Machine 1 Machine 2 Machine 3




SELECT a, max(b) as topb
FROM R

WHERE a >0

GROUP BY a

R(a, b)

Hashon a

Machine 3

Machine 2

Machine 1




SELECT a, max(b) as topb FROM R
R(a, b) WHERE a >0 GROUP BY a

Machine 1 Machine 2 Machine 3




SELECT a, max(b) as topb FROM R
R(a, b) WHERE a >0 GROUP BY a

Ya, max(b)->topb Ya, max(b)->topb Ya, max(b)->topb

Machine 2 Machine 3




1b. Map Reduce

Explain how the query will be executed in
MapReduce

SELECT a, max(b) as topb
FROMR

WHEREa >0
GROUP BY a

Specify the computation performed in the map and
the reduce functions



SELECT a, max(b) as topb
FROM R

M 3 WHERE a > 0
p GROUP BY a

* Each map task
— Scans a block of R
— Calls the map function for each tuple

— The map function applies the selection predicate to the
tuple

— For each tuple satisfying the selection, it outputs a record
with key =a and value = b




SELECT a, max(b) as topb
FROM R

Shuffle GROUP 812

 The MapReduce engine reshuffles the output of the
map phase and groups it on the intermediate key, i.e.
the attribute a




SELECT a, max(b) as topb
FROM R

Reduce GROUP B &

e Each reduce task

e computes the aggregate value max(b) = topb for each
group (i.e. a) assigned to it (by calling the
reduce function)

e outputs the final results: (a, topb)

A local combiner can be used to compute local max
before data gets reshuffled (in the map tasks)




SELECT a, max(b) as topb
FROM R

1c. Benefit of hash-partitioning %ewa:?

 What would change if we hash-partitioned R
on R.a before executing this query

— For parallel DBMS
— For MapReduce



SELECT a, max(b) as topb FROM R
Hash-partitiononaforR(a,b) | st -0 GROUP BY &

Ya, max(b)->topb Ya, max(b)->topb Ya, max(b)->topb

Machine 2 Machine 3




SELECT a, max(b) as topb
FROM R

1c. Benefit of hash-partitioning %ewa:?

* For parallel DBMS

— It would avoid the data re-shuffling phase
— It would compute the aggregates locally



SELECT a, max(b) as topb FROM R
WHERE a >0 GROUP BY a

@max(b)»m) @max(b)»tmD Qmax(b)»top)

Machine 1 Machine 2 Machine 3




SELECT a, max(b) as topb
FROM R

1c. Benefit of hash-partitioning %ewa:?

 For MapReduce

— Logically, MR won’t know that the data is hash-
partitioned

— MR treats map and reduce functions as black-boxes
and does not perform any optimizations on them

 But, if a local combiner is used
— Saves communication cost:
* fewer tuples will be emitted by the map tasks

— Saves computation cost in the reducers:
* the reducers would not have to do anything



