CSE 444: Database Internals

Section 3: Indexing and Operator Algorithms

Insertions and Deletion in a B+ tree

 Note: the <, <= assumptions in this class:

Internal node:

- Left pointer
- from key = k: to
- keys < k
- Right pointer:
- to keys >= k

Leaf node:

- Left pointer from key = k: to the block containing data with value k in that attribute
- Last remaining pointer on right: To the next leaf on right

Insertions and Deletion in a B+ tree

- Note: when a leaf is split, the middle (d+1-th) key is copied to the new leaf on right (and also inserted in parent)
 - Since we assumed the right pointer from key = k points to keys >= k
- Note: when an internal node is split, we do not need to copy the middle (d+1-th) key to the right, only insert it in parent
 - Use the left pointer of the new right internal node.
 - See the example

- Start with an empty B+ tree, d=2
- Insert 17, 3, 25, 95, 8, 57, 69
- Then insert 29, 91, 78, 80, 92, 99, 97

Insent 97

Need to split root, height increases! Note: - 78 is not being copied to right new node. unlike leaves cony? We have left pointer from 91 which

- Now delete all nodes in the following order:
- 57, 3, 99, 29, 17, 25, 95, 8, 78, 92, 69, 97, 91

separating the siblings. left sibling: $\leq d - 1$ keys (that's why needed more kays) right sibling: $\leq d$ keys (that's why we could not borrow from it) Total $\leq 2d - 1$ keys. So hav we have room to include the key from parent (here 78)

Notations

- B(R) = # of blocks (i.e. pages) for relation R
- T(R) = # of tuples in relation R
- V(R, a) = # of distinct values of attribute a
- Memory M

Problem 2 Algorithms for Group By and Aggregate Operators

For homework 2:

Understand what is going on, do not blindly apply formula! Try to choose outer relation carefully to reduce cost/fit data

in memory

Modified Tweet Example:
Tweet(tid, uid, tlen) tlen = tweet length

SELECT uid, MIN(tlen) FROM Tweet GROUP BY uid

Problem 2a: One pass, hash-based grouping

Discussion: Problem 2a

Cost:

- Clustered?
 - B(R): assuming M 1 pages can hold all groups tuples for groups can be shorter or larger than original tuples
- Unclustered?
 - Also B(R)

Which method does the grouping:

open(), next(), or close()?

 Cannot return anything until the entire data is read. Open() needs to do grouping

What to do for AVG(tlen)?

 Keep both SUM(tlen) and COUNT(*) for each group in memory

Problem 2b: Two pass, hash-based grouping

Discussion: Problem 2b

Cost?

• 3B(R)

Assumptions?

- Need to hold all distinct values in the same bucket in M-1
- Assuming uniformity, $B(R) \le M^2$ is safe to assume
- But note that can handle much bigger relations R if the groups are large and #groups is small.

Problem 2c: Two pass, sort-merge-based grouping

Discussion: Problem 2c

Cost?

• 3B(R)

Assumptions?

- Need to hold one block from each run in M pages
- $B(R) <= M^2$

Merge-sort based single pass algorithm?

Not good here: same IO cost, more CPU cost

One pass vs. Two pass

- One pass:
 - smaller disk I/O cost
 - e.g. B(R) for one-pass hash-based aggregation
 - Handles smaller relations
 - e.g. B(R) <= M
- Two/Multi pass:
 - Larger disk I/O cost
 - e.g. 3B(R) for two-pass hash-based aggregation
 - Can handle larger relations
 - e.g. B(R) <= M²

Review

- Two-pass Hash-based Join
 - -Cost: 3B(R) + 3B(S)
 - -Assumption: $Min(B(R), B(S)) \le M^2$
- Two-pass Sort-merge-based Join
 - Implementation 1:
 - Cost: 5B(R) + 5B(S)
 - For R, S: sort runs/sublists (2 I/O, read + write)
 - Merge sublists to have entire R, S sorted individually (2 I/O, read + write)
 - Join by combining R and S (only read, write not counted 1 I/O)
 - Assumption: $B(R) \le M^2$, $B(S)) \le M^2$
 - Implementation 2:
 - Cost: 3B(R) + 3B(S)
 - Assumption: $B(R) + B(S) \le M^2$