
CSE 444: Database
Internals

Section 3:
Indexing and Operator

Algorithms

Insertions and Deletion in a B+ tree

• Note: the <, <= assumptions in this
class:

40 50 60

30 40 55

Internal node:
• Left pointer
from key = k: to
keys < k
• Right pointer:
to keys >= k

70

40 50 6
0

40 50 60

Leaf node:
• Left pointer from key = k: to the
block containing data with value k
in that attribute
• Last remaining pointer on right: To
the next leaf on right

Insertions and Deletion in a B+ tree

• Note: when a leaf is split, the middle (d+1-th) key
is copied to the new leaf on right (and also
inserted in parent)
– Since we assumed the right pointer from key = k points

to keys >= k

• Note: when an internal node is split, we do not
need to copy the middle (d+1-th) key to the right,
only insert it in parent
– Use the left pointer of the new right internal node.
– See the example

Problem 1:
B+ tree insertion and deletion

• Start with an empty B+ tree, d=2
• Insert 17, 3, 25, 95, 8, 57, 69
• Then insert 29, 91, 78, 80, 92, 99, 97

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

• Now delete all nodes in the following
order:

57, 3, 99, 29, 17, 25, 95, 8, 78, 92, 69,
97, 91

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Problem 1:
B+ tree insertion and deletion

Notations

• B(R) = # of blocks (i.e. pages) for
relation R

• T(R) = # of tuples in relation R
• V(R, a) = # of distinct values of

attribute a
• Memory M

Problem 2
Algorithms for Group By and Aggregate Operators

For homework 2:
Understand what is going on, do not blindly apply formula!

 Try to choose outer relation carefully to reduce cost/fit
data
 in memory

• Modified Tweet Example:
Tweet(tid, uid, tlen) tlen = tweet length

SELECT uid, MIN(tlen)
FROM Tweet
GROUP BY uid

Problem 2a:
One pass, hash-based grouping

24

5, 1, 7 4, 2, 10

Tweet

1, 3, 3 3,1, 5

Showing
tid, uid, tlen

7, 3, 8 2, 2,5

6, 3, 9 8,1, 10

Disk

M =
3

Problem 2a:
One pass, hash-based grouping

25

5, 1, 7 4, 2, 10

Tweet

1, 3, 3 3,1, 5

Showing
tid, uid, tlen

7, 3, 8 2, 2,5

6, 3, 9 8,1, 10

Disk

Main memory data structure
(holds minimum for every

group)

5, 1, 7 4, 2, 10

H = uid %
2

1, 7

2, 10

Could use other main-memory data
structures as well

M =
3

One pass, hash-based
grouping

26

5, 1, 7 4, 2, 10

Tweet

1, 3, 3 3,1, 5

Showing
tid, uid, tlen

7, 3, 8 2, 2,5

6, 3, 9 8,1, 10

Disk

1, 3, 3 3,1, 5

H = uid %
2

1, 5 3, 3

2, 10

Minimum
updated

from 7 to 5

M =
3

Discussion: Problem 2a
Cost:
• Clustered?

- B(R): assuming M – 1 pages can hold all groups – tuples for
groups can be shorter or larger than original tuples

• Unclustered?
- Also B(R)

Which method does the grouping:
 open(), next(), or close()?
• Cannot return anything until the entire data is read. Open()

needs to do grouping

What to do for AVG(tlen)?
• Keep both SUM(tlen) and COUNT(*) for each group in

memory

Problem 2b:
Two pass, hash-based grouping

28

Tweet

Showing
tid, uid, tlen M =

3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

Hint: Two-pass hash-based join in
yesterday’s lecture!

Problem 2b:
Two pass, hash-based grouping

29

Tweet

Showing
tid, uid, tlen

5, 1, 7 4, 2, 10

H = uid %
2

5, 1, 7

4, 2, 10

M =
3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

No Aggregation is performed in the first pass

Problem 2b:
Two pass, hash-based grouping

30

Tweet

Showing
tid, uid, tlen

1, 3, 3 3, 5, 5

H = uid %
2

5, 1, 7 1, 3, 3

4, 2, 10

M =
3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

No Aggregation is performed in the first pass

Flush
!

Problem 2b:
Two pass, hash-based grouping

31

Tweet

Showing
tid, uid, tlen M =

3
5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

Final buffer and disk after
pass1

5, 1, 7 1, 3, 3 3, 5, 5 7, 3, 1

6, 4, 9 8, 4, 104, 2, 10 2, 2, 5

Problem 2b:
Two pass, hash-based grouping

32

Tweet

Showing
tid, uid, tlen

5, 1, 7 1, 3, 3

1, 7 3, 3

M =
3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

Second pass: compute aggregate in
each bucket
Need to keep only one record per group

5, 1, 7 1, 3, 3 3, 5, 5 7, 3, 1

6, 4, 9 8, 4, 104, 2, 10 2, 2, 5

Problem 2b:
Two pass, hash-based grouping

33

Tweet

Showing
tid, uid, tlen

3, 5, 5 7, 3, 1

1, 7 3, 3

5, 5

M =
3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

Second pass: compute aggregate in
each bucket
Need to keep only one record per group

5, 1, 7 1, 3, 3 3, 5, 5 7, 3, 1

6, 4, 9 8, 4, 104, 2, 10 2, 2, 5

Update min

Discussion: Problem 2b

Cost?
• 3B(R)

Assumptions?
– Need to hold all distinct values in the same

bucket in M-1
– Assuming uniformity, B(R) <= M2 is safe to

assume
– But note that can handle much bigger relations R

if the groups are large and #groups is small.

Problem 2c:
Two pass, sort-merge-based grouping

35

Tweet

Showing
tid, uid, tlen

M =
3

5, 1, 7 4, 2, 10

1, 3, 3 3 ,5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

Hint: Two-pass sort-merged join in
yesterday’s lecture!

Problem 2c:
Two pass, sort-merge-based grouping

36

Tweet

Showing
tid, uid, tlen M =

3
5, 1, 7 4, 2, 10

2, 2, 5

7, 3, 1

6, 4, 9 8, 4, 10

Step 1: Divide R into M partitions
sort each partition in memory
(on group by attr = uid)
Write to disk

1, 3, 3

3, 5, 5

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

Problem 2c:
Two pass, sort-merge-based grouping

37

Tweet

Showing
tid, uid, tlen M =

3
6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 1: Divide R into M partitions
sort each partition in memory
(on group by attr = uid)
Write to disk

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

Problem 2c:
Two pass, sort-merge-based grouping

38

Tweet

Showing
tid, uid, tlen

5, 1, 7 4, 2, 10

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2:
• Load first blocks from all runs
• Find minimum of each key by “Combine”
approach in merge-sort
• Repeatedly find the lest value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

Not showing the outputs in
output buffer

(uid,
min(tlen))
(1, 7)

M =
3

Problem 2c:
Two pass, sort-merge-based grouping

39

Tweet

Showing
tid, uid, tlen M =

3
5, 1, 7 4, 2, 10

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by
“Combine” approach in merge-sort

Repeatedly find the least value of the
sort key: next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3,5, 5

6, 4, 9 8, 4, 10

(uid,
min(tlen))
(1, 7)
(2, 10)

Not showing the outputs in
output buffer

Problem 2c:
Two pass, sort-merge-based grouping

40

Tweet

Showing
tid, uid, tlen M =

3
5, 1, 7 4, 2, 10

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by
“Combine” approach in merge-sort

Repeatedly find the least value of the
sort key: next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid,
min(tlen))
(1, 7)
(2, 10)

Not showing the outputs in
output buffer

Problem 2c:
Two pass, sort-merge-based grouping

41

Tweet

Showing
tid, uid, tlen M =

3
2, 2, 5 1, 3, 3

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by
“Combine” approach in merge-sort

Repeatedly find the least value of the
sort key: next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid,
min(tlen))
(1, 7)
(2, 10)

Not showing the outputs in
output buffer

Problem 2c:
Two pass, sort-merge-based grouping

42

Tweet

Showing
tid, uid, tlen M =

3
2, 2, 5 1, 3, 3

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by
“Combine” approach in merge-sort

Repeatedly find the least value of the
sort key: next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid,
min(tlen))
(1, 7)
(2, 5)
(3, 3)

Not showing the outputs in
output buffer

Problem 2c:
Two pass, sort-merge-based grouping

43

Tweet

Showing
tid, uid, tlen M =

3
7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by
“Combine” approach in merge-sort

Repeatedly find the least value of the
sort key: next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid,
min(tlen))
(1, 7)
(2, 5)
(3, 3)

Not showing the outputs in
output buffer

Problem 2c:
Two pass, sort-merge-based grouping

44

Tweet

Showing
tid, uid, tlen M =

3
7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by
“Combine” approach in merge-sort

Repeatedly find the lest value of the
sort key: next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid,
min(tlen))
(1, 7)
(2, 5)
(3, 1)
(4, 9)
(5, 5)Not showing the outputs in

output buffer

Discussion: Problem 2c

Cost?
• 3B(R)

Assumptions?
– Need to hold one block from each run in M pages
– B(R) <= M2

Merge-sort based single pass algorithm?
– Not good here: same IO cost, more CPU cost

One pass vs. Two pass

• One pass:
– smaller disk I/O cost

• e.g. B(R) for one-pass hash-based aggregation

– Handles smaller relations
• e.g. B(R) <= M

• Two/Multi pass:
– Larger disk I/O cost

• e.g. 3B(R) for two-pass hash-based aggregation

– Can handle larger relations
• e.g. B(R) <= M2

Review

• Two-pass Hash-based Join
– Cost: 3B(R) + 3B(S)
– Assumption: Min(B(R), B(S)) <= M2

• Two-pass Sort-merge-based Join
– Implementation 1:

• Cost: 5B(R) + 5B(S)
– For R, S: sort runs/sublists (2 I/O, read + write)
– Merge sublists to have entire R, S sorted individually (2 I/O, read + write)
– Join by combining R and S (only read, write not counted - 1 I/O)

• Assumption: B(R) <= M2 , B(S)) <= M2

– Implementation 2:
• Cost: 3B(R) + 3B(S)
• Assumption: B(R) + B(S) <= M2

	Slide 1
	Insertions and Deletion in a B+ tree
	Insertions and Deletion in a B+ tree
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Problem 1: B+ tree insertion and deletion
	Notations
	Problem 2 Algorithms for Group By and Aggregate Operators
	Problem 2a: One pass, hash-based grouping
	Problem 2a: One pass, hash-based grouping
	One pass, hash-based grouping
	Discussion: Problem 2a
	Problem 2b: Two pass, hash-based grouping
	Problem 2b: Two pass, hash-based grouping
	Problem 2b: Two pass, hash-based grouping
	Problem 2b: Two pass, hash-based grouping
	Problem 2b: Two pass, hash-based grouping
	Problem 2b: Two pass, hash-based grouping
	Discussion: Problem 2b
	Problem 2c: Two pass, sort-merge-based grouping
	Problem 2c: Two pass, sort-merge-based grouping
	Problem 2c: Two pass, sort-merge-based grouping
	Problem 2c: Two pass, sort-merge-based grouping
	Problem 2c: Two pass, sort-merge-based grouping
	Problem 2c: Two pass, sort-merge-based grouping
	Problem 2c: Two pass, sort-merge-based grouping
	Problem 2c: Two pass, sort-merge-based grouping
	Problem 2c: Two pass, sort-merge-based grouping
	Problem 2c: Two pass, sort-merge-based grouping
	Discussion: Problem 2c
	One pass vs. Two pass
	Review

