CSE 444: Database Internals

Lecture 25 Replication

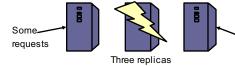
CSE 444 - Spring 2016

References

- Ullman Book Chapter 20.6
- Database management systems.
 Ramakrishnan and Gehrke.
 Third Ed. Chapter 22.11

CSE 444 - Spring 2016

L 444 - Oping 2010


Outline

- · Goals of replication
- · Three types of replication
 - Eager replication
 - Lazy replication
 - Two-tier replication

CSE 444 - Spring 2016

Goals of Replication

- · Goal 1: availability
- · Goal 2: performance

 But, it's easy to build a replicated system that reduces performance and availability

CSE 444 - Spring 2016

requests

Synchronous Replication

- Also called eager replication
- All updates are applied to all replicas (or to a majority) as part of a single transaction (need two phase commit)
- · Main goal: as if there was only one copy
 - Maintain consistency
 - Maintain one-copy serializability
 - I.e., execution of transactions has same effect as an execution on a non-replicated db
- · Transactions must acquire global locks

CSE 444 - Spring 2016

Synchronous Master Replication

- · One master for each object holds primary copy
 - The "Master" is also called "Primary"
 - To update object, transaction must acquire a lock at the master
 - Lock at the master is global lock
- Master propagates updates to replicas synchronously
 - Updates propagate as part of the same distributed transaction
 Need to run 2PC at the end
 - For example, using triggers

CSE 444 - Spring 2016

Crash Failures

- · What happens when a secondary crashes?
 - Nothing happens
 - When secondary recovers, it catches up
- · What happens when the master/primary fails?
 - Blocking would hurt availability
 - Must chose a new primary: run election

CSE 444 - Spring 2016

Network Failures

- · Network failures can cause trouble...
 - Secondaries think that primary failed
 - Secondaries elect a new primary
 - But primary can still be running
 - Now have two primaries!

CSE 444 - Spring 2016

Majority Consensus

- To avoid problem, only majority partition can continue processing at any time
- · In general,
 - Whenever a replica fails or recovers...
 - a set of communicating replicas must determine...
 - whether they have a majority before they can continue

CSE 444 - Spring 2016

Synchronous Group Replication

- · With n copies
 - Exclusive lock on x copies is global exclusive lock
 - Shared lock on s copies is global shared lock
 - Must have: 2x > n and s + x > n
- · Majority locking
 - -s = x = [(n+1)/2]
 - No need to run any reconfiguration algorithms
- · Read-locks-one, write-locks-all
 - -s=1 and x=n, high read performance
 - Need to make sure algo runs on quorum of computers

CSE 444 - Spring 2016

Synchronous Replication Properties

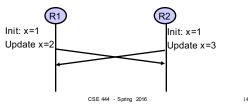
- Favours consistency over availability
 - Only majority partition can process requests
 - There appears to be a single copy of the db
- · High runtime overhead
 - Must lock and update at least majority of replicas
 - Two-phase commit
 - Runs at pace of slowest replica in quorum
 - So overall system is now slower
 - Higher deadlock rate (transactions take longer)

CSE 444 - Spring 2016

Asynchronous Replication

- Also called lazy replication
- · Also called optimistic replication
- · Main goals: availability and performance
- Approach
 - One replica updated by original transaction
 - Updates propagate asynchronously to other replicas

CSE 444 - Spring 2016


Spring 2016 12

Asynchronous Master Replication

- · One master holds primary copy
 - Transactions update primary copy
 - Master asynchronously propagates updates to replicas, which process them in same order (e.g. through log shipping)
 - Ensures single-copy serializabil ity
- What happens when master/primary fails?
 - Can lose most recent transactions when primary fails!
 - After electing a new primary, secondaries must agree who is most up-to-date

CSE 444 - Spring 2016

Asynchronous Group Replication · Also called multi-master · Best scheme for availability • Cannot guarantee one-copy serializability!

Asynchronous Group Replication

- · Cannot guarantee one-copy serializability!
- Instead guarantee convergence
 - Db state does not reflect any serial execution
 - But all replicas have the same state
- · Detect conflicts and reconcile replica states
- · Different reconciliation techniques are possible
 - Manual
 - Most recent timestamp wins
 - Site A wins over site B
 - User-defined rules, etc.

 CSE 444 Spring 2016

15

Detecting Conflicts Using Timestamps Init: x=1 at T_0 Init: x=1 at T₀ Update at T₁: x=2 x=2, Old: T₀ New: T₁ x=2 at Tx=2 at T₁ CSE 444 - Spring 2016

Detecting Conflicts Using Timestamps Init: x=1 at T_0 Init: x=1 at T₀ Update at T₁: x=2 x=2, Old: T₀ New: T₁ Update at T₂: x=3 Conflict! Conflict! Reconciliation rule Reconciliation rul $T_2 > T_1$, so x=3 $T_2 > T_1$, so x=3 CSE 444 - Spring 2016 17

Asynchronous Group **Replication Properties**

- Favours availability over consistency
 - Can read and update any replica
 - High runtime performance
- Weak consistency

- Conflicts and reconciliation

CSE 444 - Spring 2016

18

Two-Tier Replication

- Benefits of lazy master and lazy group
- · Each object has a master with primary copy
- When disconnected from master
 - Secondary can only run tentative transactions
- · When reconnects to master
 - Master reprocesses all tentative transactions
 - Checks an acceptance criterion
 - If passes, we now have final commit order
 - Secondary undoes tentative and redoes committed

CSE 444 - Spring 2016

...

Conclusion

- Replication is a very important problem
 - Fault-tolerance (various forms of replication)
 - Caching (lazy master)
 - Warehousing (lazy master)
 - Mobility (two-tier techniques)
- Replication is complex, but basic techniques and trade-offs are very well known
 - Synchronous or asynchronous replication
 - Master or quorum

CSE 444 - Spring 2016

20