
CSE 444: Database Internals

Lecture 24
Two-Phase Commit (2PC)

1CSE 444 - Spring 2016

CSE 444 - Spring 2016 2

References

• Ullman book: Section 20.5

• Ramakrishnan book: Chapter 22

We are Learning about
Scaling DBMSs

• Scaling the execution of a query
– Parallel DBMS
– MapReduce
– Spark

• Scaling transactions
– Distributed transactions
– Replication
– Scaling with NoSQL and NewSQL

CSE 444 - Spring 2016 3

☛

Our Goal

4Browser

Run many
transactions in a

large cluster

Connection
(e.g., JDBC)

HTTP/SSL
…

http
multiplex

…

CSE 444 - Spring 2016Web Server Farm

Transaction Scaling Challenges

• Distribution
– There is a limit on transactions/sec on one server
– Need to partition the database across multiple servers
– If a transaction touches one machine, life is good!
– If a transaction touches multiple machines, ACID becomes

extremely expensive! Need two-phase commit

• Replication
– Replication can help to increase throughput and lower latency
– Create multiple copies of each database partition
– Spread queries across these replicas
– Easy for reads but writes, once again, become expensive!

CSE 444 - Spring 2016 5

CSE 444 - Spring 2016 6

Distributed Transactions

• Concurrency control

• Failure recovery
– Transaction must be committed at all sites or at none

of the sites!
• No matter what failures occur and when they occur

– Two-phase commit protocol (2PC)

CSE 444 - Spring 2016 7

Distributed Concurrency Control

• In theory, different techniques are possible
– Pessimistic, optimistic, locking, timestamps

• In practice, distributed two-phase locking
– Simultaneously hold locks at all sites involved

• Deadlock detection techniques
– Global wait-for graph (not very practical)
– Timeouts

• If deadlock: abort least costly local transaction

CSE 444 - Spring 2016 8

Two-Phase Commit: Motivation

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) COMMIT

3) COMMIT4) Coordinator
crashes

But I already aborted!

What do we do now?

CSE 444 - Spring 2016 9

Two-Phase Commit Protocol
• One coordinator and many subordinates

– Phase 1: prepare
• All subordinates must flush tail of write-ahead log to disk before ack
• Must ensure that if coordinator decides to commit, they can commit!

– Phase 2: commit or abort
– Log records for 2PC include transaction and coordinator ids
– Coordinator also logs ids of all subordinates

• Principle
– Whenever a process makes a decision: vote yes/no or commit/abort
– Or whenever a subordinate wants to respond to a message: ack
– First force-write a log record (to make sure it survives a failure)
– Only then send message about decision

CSE 444 - Spring 2016 10

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

3) Force-write: prepare

3) Force-write: prepare

4) YES

4) YES
4) YES

11

2PC: Phase 2, Commit

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) Force-write:
commit

2) COMMIT

2) COMMIT

2) COMMIT

3) Force-write: commit

3) Force-write: commit

3) Force-write: commit

4) ACK

4) ACK
4) ACK

Transaction is
now committed! 5) Commit transaction

and “forget” it

5) Commit transaction
and “forget” it

5) Commit transaction and “forget” it

5) Write: end, then forget transaction

CSE 444 - Spring 2016

12

2PC with Abort

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

3) Force-write: abort

3) Force-write: abort

4) YES

4) No
4) NO

5) Abort transaction
and “forget” it

5) Abort transaction and “forget” it
CSE 444 - Spring 2016

CSE 444 - Spring 2016 13

2PC with Abort

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) Force-write:
abort

2) ABORT

3) Force-write: abort
4) ACK

5) Write: end, then forget transaction

5) Abort transaction
and “forget” it

CSE 444 - Spring 2016 14

Coordinator State Machine

• All states involve
waiting for messages

COMMITTINGABORTING

INIT

Receive: Commit
Send: Prepare

R: No votes
FW: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End
Forget

R: ACKS
W: End
Forget

15

Subordinate State Machine

• INIT and PREPARED
involve waiting

PREPARED

COMMITTINGABORTING

INIT
R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
FW: Abort
S: No vote

Abort
and forget

R: Abort
FW: Abort
S: Ack

Commit
and forget

R: Commit
FW: Commit
S: Ack

CSE 444 - Spring 2016 16

Handling Site Failures

• Approach 1: no site failure detection
– Can only do retrying & blocking

• Approach 2: timeouts
– Since unilateral abort is ok,
– Subordinate can timeout in init state
– Coordinator can timeout in collecting state
– Prepared state is still blocking

• 2PC is a blocking protocol

CSE 444 - Spring 2016 17

Site Failure Handling Principles

• Retry mechanism
– In prepared state, periodically query coordinator
– In committing/aborting state, periodically resend messages to

subordinates

• If doesn't know anything about transaction respond
“abort” to inquiry messages about fate of transaction

• If there are no log records for a transaction after a
crash then abort transaction and “forget” it

Site Failure Scenarios

1818

COMMITTINGABORTING

INIT

Receive: Commit
Send: Prepare

R: No votes
FW: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End

R: ACKS
W: End

PREPARED

COMMITTINGABORTING

INIT

R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
FW: Abort
S: No vote

Abort
and forget

R: Abort
FW: Abort
S: Ack

R: Commit
FW: Commit
S: Ack

Commit
and forget

Examples on the board (please take notes)

CSE 444 - Spring 2016 19

Observations

• Coordinator keeps transaction in transactions table until it
receives all acks
– To ensure subordinates know to commit or abort
– So acks enable coordinator to “forget” about transaction

• After crash, if recovery process finds no log records for a
transaction, the transaction is presumed to have aborted

• Read-only subtransactions: no changes ever need to be
undone nor redone

CSE 444 - Spring 2016 20

Presumed Abort Protocol

• Optimization goals
– Fewer messages and fewer force-writes

• Principle
– If nothing known about a transaction, assume ABORT

• Aborting transactions need no force-writing

• Avoid log records for read-only transactions
– Reply with a READ vote instead of YES vote

• Optimizes read-only transactions

21

2PC State Machines (repeat)

COMMITTINGABORTING

INIT

Receive: Commit
Send: Prepare

R: No votes
FW: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End

R: ACKS
W: End

PREPARED

COMMITTINGABORTING

INIT

R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
FW: Abort
S: No vote

Abort
and forget

R: Abort
FW: Abort
S: Ack

R: Commit
FW: Commit
S: Ack

Commit
and forget

22

Presumed Abort State Machines

COMMITTING

INIT

Receive: Commit
Send: Prepare

R: No votes
W: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End

PREPARED

COMMITTINGABORTING

INIT

R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
W: Abort
S: No vote

Abort
and forget

R: Abort
W: Abort

R: Commit
FW: Commit
S: Ack

Commit
and forget

