CSE 444: Database Internals

Lectures 20-21
Parallel DBMSs

CSE 444 - Sping 2016

Where We Are Headed Next

» Scaling the execution of a query
— Parallel DBMS

— Distributed query processing
— MapReduce

» Scaling transactions
— Distributed transactions
— Replication

» Scaling with NoSQL and NewSQL

CSE 444 - Sping 2016

DBMS Deployment: Local

@

Aoplication [Great for one application}

(could be more) and one
user.
DBMS
Desktop
Data files on disk

CSE 444 - Spiing 2016

What We Have Already Learned

* Overall architecture of a DBMS

Internals of query execution:

— Data storage and indexing

— Buffer management

— Query evaluation including operator algorithms
— Query optimization
Internals of transaction processing:

— Concurrency control: pessimistic and optimistic
— Transaction recovery: undo, redo, and undo/redo

CSE 444 - Sping 2016

Reading Assignments
» Main textbook Chapter 20.1

» Database management systems.
Ramakrishnan&Gehrke.
Third Ed. Chapter 22.11

CSE 444 - Sping 2016

DBMS Deployment: Client/Server

Great for many apps and
many users

O —
L

a
connectlon @
\

Applications

CSE 444 - Spiing 2016

DBMS Deployment: 3 Tiers

Great for web-based
applications ﬁﬁiﬂ

——1 | Connection

DB Server eb Server &

App Server

DBMS Deployment: Cloud

Great for web-based
applications

CSE 444 - Sping 2016 B
r

D

—

-
Use many Web servers: Easy!
TSE 444 - Sping 2016

How to Scale?

N

B Server

/

h
- —_—
multiplex

AN

Connection |
(eg. JDBC]

.
B

~F

gad

Brow

a

a

HTTP/SSL

ser

Many DBMS
instances: HARD

to Scale?

A

lﬁﬂﬂ|
L1

gy R g g)

\
T

HTTP/SSL
\L E

A
Eij l ‘--\\\\\\\\\~iiﬁg
- -
- <_Web Server Far ‘
744 - Sping 2016 BI’OWSGF/

AN

Connection |
(eg. JDBC)

.
B

gq . [@oa
[

How to Scale?

* We can easily replicate the web servers and
the application servers

» We cannot so easily replicate the database
servers, because the database is unique

» We need to design ways to scale up the DBMS

CSE 444 - Spiing 2016

How to Scale a DBMS?
|| —— N
- Scale up =

— A mor‘e\

powerful server

Scale out

More servers,
one database

What to scale?

* OLTP: Transactions per second
— OLTP = Online Transaction Processing

* OLAP: Query response time
— OLAP = Online Analytical Processing

CSE 444 - Sping 2016 13

Scaling Transactions Per Second

* Amazon
» Facebook
o Twitter

+ ... your favorite Internet application...

* Goalis to scale OLTP workloads

» We will get back to this next week

CSE 444 - Sping 2016 14

Scaling Single Query
Response Time
* Goalis to scale OLAP workloads

» That means the analysis of massive datasets

CSE 444 - Sping 2016 15

This Week: Focus on Scaling a
Single Query

CSE 444 - Sping 2016 16

Big Data

e Buzzword?

+ Definition fromindustry:
— High Volume http://www.gartner. com/newsroom/id/ 1731916
— High Variety
— High Velocity

CSE 444 - Spiing 2016 17

Big Data

Volume is not anissue

« Databases do parallelize easily; techniques available
from the 80's
— Data partitioning
— Parallel query processing

» SQL is embarrassingly parallel
* We will learn how to do this

* And you will implementitinlab 6

CSE 444 - Spiing 2016 18

Big Data

New workloads are anissue

» Big volumes, small analytics
— OLAP queries: join + group-by + aggregate
— Can be handled by today’s RDBMSs (e.g., Teradata)

» Big volumes, big analytics
— More complex Machine Learning, e.g. click
prediction, topic modeling, SVM, k-means

— Requires innovation — Active research area
CSE 444 - Spiing 2016 19

Data Analytics Companies

Explosion of db analytics companies

Greenplum founded in 2003 acquired by EMC in 2010; A
parallel shared-nothing DBMS (this lecture)

» Vertica founded in 2005 and acquired by HP in2011; A parallg
column-store shared-nothing DBMS
DATAIlegro founded in 2003 acquired by Microsoft in 2008; A
parallel, shared-nothing DBMS

« Aster Data S?/stems foundedin 2005 acquired by Teradata in
2011; A parallel, shared-nothing, MapReduce-based data
processing systm (in two lectures). SQL on top of MapRedug
Netezza founded in 2000 and acquired by IBM in 2010. A
parallel, shared-nothing DBMS.

|Great time to be in data management, data mining/statistics, or machine Iearningl

Two Approaches to Parallel Data
Processing

» Parallel databases, developed starting with the
80s (this lecture and next)
— For both OLTP (transaction processing)
— And for OLAP (decision support queries)

* MapReduce, first developed by Google,
published in 2004 (in two lectures)
— Only for decision support queries

|Today we see convergence of the two approaches | 2

Parallel DBMSs

* Goal

— Improve performance by executing multiple
operations in parallel

» Key benefit

— Cheaper to scale than relying on a single
increasingly more powerful processor

» Key challenge

— Ensure overhead and contention do not kill
performance

CSE 444 - Sping 2016 2

Performance Metrics
for Parallel DBMSs

Speedup

» More processors = higher speed

* Individual queries should run faster

» Should do more transactions per second (TPS)

» Fixed problem size overall, vary # of processors
("strong scaling”)

CSE 444 - Spiing 2016 23

Linear v.s. Non-linear Speedup

Speedup

processors (= P)'

CSE 444 - Spiing 2016 24

Performance Metrics
for Parallel DBMSs

Scaleup
» More processors =» can process more data

» Fixed problem size per processor, vary # of
processors ("weak scaling”)

» Batch scaleup
— Same query on larger input data should take the same timg

» Transaction scaleup
— N-times as many TPS on N-times larger database
— But each transaction typicdly remains small

CSE 444 - Sping 2016 2

Linear v.s. Non-linear Scaleup

Batch
Scaleup

- - —

x1 x5 x10 x15
[l : :] S
processors (=P) AND data size

CSE 444 - Sping 2016 2%

Warning

* Be careful. Commonly used terms today:
— “scale up” = use an increasingly more powerful server
— “scale out” = use a larger number of servers

CSE 444 - Sping 2016 27

Challenges to
Linear Speedup and Scaleup

» Startup cost
— Cost of starting an operation on many processors

* Interference
— Contention for resources between processors

+ Skew
— Slowest processor becomes the bottleneck

CSE 444 - Sping 2016 3

Three Architectures for Parallel DB

» Shared memory
» Shared disk

» Shared nothing

CSE 444 - Spiing 2016 29

Architectures for Parallel Databases

Figure 1 - Types of database architecture
Shared-
Everything [shared-Disk (e.g. Oracle RAC) | Shared-Nothing (e.g. Greenplum) |
(e.g. SMP server) |, :
P e i

| P etwork
. NN W H
i H i |es| o8 |es! (o8| o8\ ‘o8

SAN/FC

W i - i Dk |Disk| \Bisk| DSk (Bisk | DisK
' SAN / Shared !
H Disk :

From: Greenplum Database Whitepaper
|SAN = “Storage Area Network” |

CSE 444 - Spiing 2016 30

Shared Memory

* Nodes share both RAM and disk
» Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query to
run faster (see query plans)

» Easy to use and program
» But very expensive to scale

CSE 444 - Sping 2016 31

Shared Disk

» Allnodes access the same disks
* Found in the largest "single-box" (non-cluster)
multiprocessors

Oracle dominates this class of systems

Characteristics:

» Also hard to scale past a certain point: existing

deployments typically have fewer than 10
machines

CSE 444 - Sping 2016 32

Shared Nothing

+ Cluster of machines on high-speed network
» Called "clusters" or "blade servers”

» Each machine has its own memory and disk: lowest
contention.

NOTE: Because all machines today have many cores and
many disks, then shared-nothing systems typically run
many "nodes” on a single physical machine.

Characteristics:
» Today, this is the most scalable architecture.
* Most difficult to administer and tune.

[We discuss only Shared Nothing in clasg ©

In Class

* You have a parallel machine. Now what?

* How do you speed up your DBMS?

CSE 444 - Sping 2016)

Taxonomy for
Parallel Query Evaluation

* Inter-query parallelism
— Each query runs on one processor

CSE 444 - Spiing 2016 35

* Inter-query parallelism

* Inter-operator parallelism

Taxonomy for
Parallel Query Evaluation

— Each query runs on one processor

— A query runs on multiple processors
— An operator runs on one processor

CSE 444 - Spiing 2016 36

Taxonomy for
Parallel Query Evaluation

* Inter-query parallelism X
— Each query runs on one processor

* Inter-operator parallelism

— A query runs on multiple processors
— An operator runs on one processor

* Intra-operator parallelism
— An operator runs on multiple processors

CSE 444 - Sping 2016 37

Parallel Query Processing

How do we compute these operations on a shared-
nothing parallel db?

» Selection: 0a-123(R)

 Group-by: Yasum)(R)
« Join: R®'S

Before we answer that: how do we store R (and S) ona
shared-nothing parallel db?

CSE 444 - Sping 2016 39

Taxonomy for
Parallel Query Evaluation

* Inter-query parallelism X
— Each query runs on one processor

* Inter-operator parallelism

— A query runs on multiple processors
— An operator runs on one processor

* Intra-operator parallelism
— An operator runs on multiple processors

[We study only intra-operator parallelism: most scala

Horizontal Data Partitioning

Data: Servers:

KIA|B 1 2 P

CSE 444 - Sping 2016 40

Horizontal Data Partitioning

Data: Servers:

CSE 444 - Spiing 2016 41

Horizontal Data Partitioning

Data: Servers:

alale] Wlale

=
b
w

e[als]
Which tuples
goto whatserver?

—_———

CSE 444 - Spiing 2016 42

Horizontal Data Partitioning

Relation R split into P chunks Ry, ..., Re.4, stored at
the P nodes

Block partitioned
— Each group of k tuples goes to a different node

Hash based partitioning on attribute A:
— Tuple t to chunk h(t.A) mod P

Range based partitioning on attribute A:
— Tuple tto chunk i if viy <t.A<v;

CSE 444 - Sping 2016 3

Uniform Data v.s. Skewed Data

* Let R(K,AB,C); which of the following partition
methods may result in skewed partitions?

* Block partition

* Hash-partition
— On the key K
— On the attribute A

* Range-partition
— On the key K
— On the attribute A

CSE 444 - Sping 2016 4

Uniform Data v.s. Skewed Data

Let R(K,A,B,C); which of the following partition
methods may result in skewed partitions?

b

Block partition

Hash-partition Assumg unfom
— On the key K hash function

— On the attribute A

Range-partition

— On the key K
— On the attribute A

CSE 444 - Sping 2016 4

Uniform Data v.s. Skewed Data

» Let R(K,AB,C); which of the following partition
methods may result in skewed partitions?

« Block partition

+ Hash-partition Assum.ng uniform
— On the key K hash function
— On the attribute A May be skewed . when all records
have the same value

of the attribute A, then
all records end up inthe
same pattition

» Range-partition
— On the key K
— On the attribute A

CSE 444 - Sping 2016 46

Uniform Data v.s. Skewed Data

Let R(K,A,B,C); which of the following partition
methods may result in skewed partitions?

Block partition

Hash-partition Assumng uifom

— On the key K hash function

— On the attribute A e’Wedh g W‘:en al rec:ds

of the attribute A, then
all records end up inthe

Range-partition same pariion

— On the key K il o pati
— On the attribute A May be skewed D T © o0

CSE 444 - Spiing 2016 47

Data Partitioning Revisited

What are the pros and cons ?

» Block based partitioning

— Good load balance but always needs to read all the data
* Hash based partitioning

— Good load balance

— Can avoid reading all the datafor equality selections
* Range based partitioning

— Can suffer from skew (i.e., load imbalances)

— Can help reduce skew by creating uneven partitions

CSE 444 - Spiing 2016 48

Horizontal Data Partitioning

All three choices are just special cases:
» For each tuple, compute bin =f(t)

« Different properties of the function f determine
hash vs. range vs. round robin vs. anything

CSE 444 - Sping 2016 49

Parallel Selection

Compute ga=v(R), or vi<a<v2(R)
» Ona conventional database: cost=B(R)

» Q: What is the cost on a parallel database with
P processors ? A:B(R) / P, but

— Block partitioned -- all servers do the work
— Hash partitioned -- one server does the work
— Range partitioned -- some servers do the work

CSE 444 - Sping 2016 51

Parallel Selection

Compute oa=v(R), or oyi<a<v2(R)
+ Ona conventional database: cost=B(R)

* Q: What is the cost on a parallel database with
P processors ?

— Block partitioned
— Hash partitioned
— Range partitioned

CSE 444 - Sping 2016

Basic Parallel GroupBy

Data: R(K,A,B,C) -- hash-partitioned on K
Query: YA,sum(B)(R)

Reshufie R
on atribute A

Basic Parallel GroupBy

« Step 1: each server i partitions its chunk Rjusing
a hash function h(t.A) mod P: R0, Ri1, ..., Rip-1

+ Step 2: serverjcomputes ya, sum)On
Roj, R, ..., Rp-1,j

CSE 444 - Spiing 2016 53

CSE 444 - Sping 2016

Basic Parallel GroupBy

Compute YA,sum(B)(R)
* Ona conventional database: cost=B(R)

* Q: What is the cost on a parallel database with
P processors ?

CSE 444 - Spiing 2016

Basic Parallel GroupBy
Compute ya sun@)(R)
* Ona conventional database: cost=B(R)

* Q: What is the cost on a parallel database with
P processors ?

< A BR)/P

CSE 444 - Sping 2016 55

Basic Parallel GroupBy

Can we do better?
* Sum?

* Count?

+ Avg?

* Max?

* Median?

CSE 444 - Sping 2016

Basic Parallel GroupBy

Can we do better?

+ Sum?
* Count? Distributive Algebraic Holistic
sum(ai+az+...+as)= |avg(B)= median(B)
* ’A\/g’7 sum(sum(ai+az+as)+ sum(B)/count(B)
sum(as+as+as)+
. Max? sum(ar+as+as))
* Median?

CSE 444 - Sping 2016 57

Parallel Join: R=g S

+ Data: R(K1,A, C), S(K2, B, D)
* Query: R(K1,A,C) = S(K2,B,D)

Initially, both R and S are horizontally partitioned on K1and K2

Re, S

CSE 444 - Sping 2016

Parallel Join: R S

« Data: R(K1,A, C), S(K2, B, D)
« Query: R(K1,A,C) = S(K2,B,D)

Initially, both R and S are horizontally partitioned on K1and K2

Reshuffie Ron RA
and Son S.B
Each server computes
the join locally

CSE 444 - Spiing 2016 59

Parallel Join: R=pg S

» Step1
— Every server holding any chunk of R partitions its
chunk using a hash function h(t.A) mod P

— Every server holding any chunk of S partitions its
chunk using a hash function h(t.B) mod P

» Step 2:
— Each server computes the join of its local fragment
of R withiits local fragment of S

CSE 444 - Spiing 2016 60

10

Parallel Join: R=a5 S
Compute R =a-g S

* On a conventional database: cost=B(R)+B(S)

* Q: What is the cost on a parallel database with
P processors ?

CSE 444 - Sping 2016 61

Parallel Join: R>=a5 S
Compute R =a-g S

* Ona conventional database: cost=B(R)+B(S)

* Q: What is the cost on a parallel database with
P processors ?

- A: (B(R)*+B(S)) /P

CSE 444 - Sping 2016

Speedup and Scaleup

« Consider:

— Query: Yasumc)(R)
— Runtime: dominated by reading chunks from disk

« |f we double the number of nodes P, what is the
new running time?

¢ |f we double both P and the size of R, what is
the new running time?

CSE 444 - Sping 2016 63

Speedup and Scaleup

» Consider:
- Query: YA,sum(C)(R)
— Runtime: dominated by reading chunks from disk
» |f we double the number of nodes P, what is the
new running time?
— Half (each server holds %2 as many chunks)
* |f we double both P and the size of R, what is

the new running time?
— Same (each server holds the same # of chunks)

CSE 444 - Sping 2016

Optimization for Small Relations

When joining R and S
« IfIR] >>[S]
— Leave R where itis
— Replicate entire S relation across nodes

» Also called a small join or a broadcast join

CSE 444 - Spiing 2016 65

Other Interesting Parallel
Join Implementation

Skew:
+ Some partitions get more input tuples than others
Reasons:
— Range-partition instead of hash

— Some values are very popular:
* Heavy hitters values; e.g. ‘Justin Bieber’

— Selection before join with different selectivities

» Some partitions generate more output tuples tha
others

CSE 444 - Spiing 2016

11

Some Skew Handling Techniques

If using range partition:
» Ensure each range gets same number of tuples
« Eg.:{1,1,1,2,3,4,5,6}>[1,2] and [3,6]

* Eg-depthv.s. eg-width histograms

CSE 444 - Sping 2016 67

Some Skew Handling Techniques

Create more partitions than nodes
* And be smart about scheduling the partitions

* Note: MapReduce uses this technique

CSE 444 - Sping 2016 68

Some Skew Handling Techniques

Use subset-replicate (a.k.a. “skewedJoin”)
* GivenR>p- S
* Given a heavy hitter value RA="v’

(i.e. ‘v’ occurs very many times in R)

» Partition Rtuples with value ‘v’ across all nodes
e.g. block-partition, or hash on other attributes

* Replicate S tuples with value ‘v’ to all nodes
* R = the build relation
» S = the probe relation

CSE 444 - Sping 2016 69

Parallel Query Evaluation

+ Parallel query plan: tree of parallel operators
Intra-operator parallelism

— Data streams from one operator to the next
— Typically all cluster nodes process all operators

+ Can run multiple queries at the same time
Inter-query parallelism
— Queries will share the nodes in the cluster

CSE 444 - Sping 2016 70

Parallel Query Evaluation

New operator: Shuffle
» Origin: Exchange operator from Volcano system
» Serves to re-shuffle data between processes
— Handles data routing, buffering, and flow control
* Two parts: ShuffleProducer and ShuffleConsum er
* Producer:
— Pulls data from child operator and sends to n consumers
— Producer acts as driver for operators below it inquery plan
« Consumer:

— Buffers input data from n producers and makes it available
to operator through getNext() interface

CSE 444 - Spiing 2016 ul

Example: Teradata — Loading

A Customer Row is Insertedj

Hashing Algorithm produces
/1, A Hash Bucket
2. A Hash-ID

The Hash Bucket Points
One AMP

Node 1 Node 2 Node 3 Node 4

AMP = “Access Module Processor” = unit of parallelism

CSE 444 - Spiing 2016 72

12

Order(gid, item, date), Line(item, ...)

Example: Teradata — Query Execution

Find all orders from today, along with the items ordered

SELECT *
FROM Order o, Line i
WHERE o.itenm - i.iten | NENEEDY

AND o.date = today()

o.item = i.item

CSE 444 - Sping 2016 73

Order(gid,item, date), Line(item, ...)

Query Execution

AMP 1 AMP 2 AMP 3
¥ —
hash hash hash
h(o.item) h(o.item) h(o.item)
elec] elec]
date=today() date=today() date=today()
Order o — Order o — Order o
AMP 1 AMP 2 AMP 3
CSE 444 - Spiing 2016 74

Order(gid,item, date), Line(item, ...)

Query Execution

h(i.item)

Item i @tem i em i
AMP 1 AMP 2 AMP 3
CSE 444 - Spiing 2016 75

Order(gid, item, date), Line(item, ...)

Query Execution

o.item = i.item o.item = i.item o.item = i.item

AMP 1 AMP 2 AMP 3

contains all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2
contains all orders and all

lines where hash(item) = 1
CSE 444 - Spiing 2016 76

13

