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CSE 444: Database Internals

Lectures 20-21
Parallel DBMSs
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What We Have Already Learned

• Overall architecture of a DBMS
• Internals of query execution:

– Data storage and indexing
– Buffer management
– Query evaluation including operator algorithms
– Query optimization

• Internals of transaction processing:
– Concurrency control: pessimistic and optimistic
– Transaction recovery: undo, redo, and undo/redo
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Where We Are Headed Next

• Scaling the execution of a query
– Parallel DBMS
– Distributed query processing
– MapReduce

• Scaling transactions
– Distributed transactions
– Replication

• Scaling with NoSQL and NewSQL
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Reading Assignments

• Main textbook Chapter 20.1

• Database management systems. 
Ramakrishnan&Gehrke.
Third Ed. Chapter 22.11
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DBMS Deployment: Local
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Data files on disk

DBMS

Application

Desktop

Great for one application 
(could be more) and one 
user.
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DBMS Deployment: Client/Server

Data files

connection
(ODBC, JDBC)

6Applications

DB Server

Great for many apps and 
many users
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DBMS Deployment: 3 Tiers

Data files
7Browser

DB Server

Great for web-based 
applications

Web Server & 
App Server

Connection
(e.g., JDBC)

HTTP/SSL
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DBMS Deployment: Cloud

8Browser

Great for web-based 
applications

Data files DB Server Web Server & 

App Server

Connection

(e.g., JDBC)

HTTP/SSL

How to Scale?

9Browser

DB Server

Connection

(e.g., JDBC)

HTTP/SSL
…

http
multiplex
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Use many Web servers: Easy!

How to Scale?

10Browser

Many DBMS 
instances: HARD

Connection

(e.g., JDBC)

HTTP/SSL
…

http
multiplex

…
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How to Scale?

• We can easily replicate the web servers and 
the application servers

• We cannot so easily replicate the database 
servers, because the database is unique

• We need to design ways to scale up the DBMS
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How to Scale a DBMS?

12

Scale up

Scale out
A more 

powerful server

More servers,
one database
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What to scale?

• OLTP: Transactions per second
– OLTP = Online Transaction Processing

• OLAP: Query response time
– OLAP = Online Analytical Processing
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Scaling Transactions Per Second

• Amazon
• Facebook
• Twitter
• … your favorite Internet application… 

• Goal is to scale OLTP workloads

• We will get back to this next week
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Scaling Single Query
Response Time

• Goal is to scale OLAP workloads

• That means the analysis of massive datasets
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This Week: Focus on Scaling a 
Single Query
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Big Data

• Buzzword?

• Definition from industry:
– High Volume
– High Variety
– High Velocity
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http://www.gartner.com/newsroom/id/1731916

Big Data
Volume is not an issue
• Databases do parallelize easily; techniques available 

from the 80’s
– Data partitioning
– Parallel query processing

• SQL is embarrassingly parallel

• We will learn how to do this

• And you will implement it in lab 6
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Big Data

New workloads are an issue

• Big volumes, small analytics
– OLAP queries: join + group-by + aggregate
– Can be handled by today’s RDBMSs (e.g., Teradata)

• Big volumes, big analytics
– More complex Machine Learning, e.g. click 

prediction, topic modeling, SVM, k-means
– Requires innovation – Active research area
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Data Analytics Companies
Explosion of db analytics companies

• Greenplum founded in 2003 acquired by EMC in 2010; A 
parallel shared-nothing DBMS (this lecture)

• Vertica founded in 2005 and acquired by HP in 2011; A parallel, 
column-store shared-nothing DBMS

• DATAllegro founded in 2003 acquired by Microsoft in 2008; A 
parallel, shared-nothing DBMS

• Aster Data Systems founded in 2005 acquired by Teradata in 
2011; A parallel, shared-nothing, MapReduce-based data 
processing system (in two lectures).  SQL on top of MapReduce

• Netezza founded in 2000 and acquired by IBM in 2010. A 
parallel, shared-nothing DBMS.
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Two Approaches to Parallel Data 
Processing

• Parallel databases, developed starting with the 
80s (this lecture and next)
– For both OLTP (transaction processing) 
– And for OLAP (decision support queries)

• MapReduce, first developed by Google, 
published in 2004 (in two lectures)
– Only for decision support queries
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Parallel DBMSs

• Goal
– Improve performance by executing multiple 

operations in parallel

• Key benefit
– Cheaper to scale than relying on a single 

increasingly more powerful processor

• Key challenge
– Ensure overhead and contention do not kill 

performance
22CSE 444 - Spring 2016

Performance Metrics 
for Parallel DBMSs

Speedup 
• More processors è higher speed
• Individual queries should run faster
• Should do more transactions per second (TPS)
• Fixed problem size overall, vary # of processors 

("strong scaling”)
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Linear v.s. Non-linear Speedup

# processors (=P)

Speedup

24CSE 444 - Spring 2016
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Performance Metrics 
for Parallel DBMSs

Scaleup
• More processors è can process more data
• Fixed problem size per processor, vary # of 

processors ("weak scaling”)
• Batch scaleup

– Same query on larger input data should take the same time

• Transaction scaleup
– N-times as many TPS on N-times larger database
– But each transaction typically remains small
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Linear v.s. Non-linear Scaleup

# processors (=P) AND data size 

Batch
Scaleup

×1 ×5 ×10 ×15
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Warning

• Be careful. Commonly used terms today:
– “scale up” = use an increasingly more powerful server
– “scale out” = use a larger number of servers
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Challenges to 
Linear Speedup and Scaleup

• Startup cost
– Cost of starting an operation on many processors

• Interference
– Contention for resources between processors

• Skew
– Slowest processor becomes the bottleneck
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Three Architectures for Parallel DB

• Shared memory

• Shared disk

• Shared nothing
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Architectures for Parallel Databases

30

From: Greenplum Database Whitepaper 

SAN = “Storage Area Network”
CSE 444 - Spring 2016



6

Shared Memory

• Nodes share both RAM and disk
• Dozens to hundreds of processors

Example: SQL Server runs on a single machine 
and can leverage many threads to get a query to 
run faster (see query plans)

• Easy to use and program
• But very expensive to scale
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Shared Disk

• All nodes access the same disks
• Found in the largest "single-box" (non-cluster) 

multiprocessors

Oracle dominates this class of systems

Characteristics:
• Also hard to scale past a certain point: existing 

deployments typically have fewer than 10 
machines
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Shared Nothing
• Cluster of machines on high-speed network
• Called "clusters" or "blade servers”
• Each machine has its own memory and disk: lowest 

contention.

NOTE: Because all machines today have many cores and 
many disks, then shared-nothing systems typically run 
many "nodes” on a single physical machine.

Characteristics:
• Today, this is the most scalable architecture.
• Most difficult to administer and tune.

33CSE 444 - Spring 2016We discuss only Shared Nothing in class

In Class

• You have a parallel machine.  Now what?  

• How do you speed up your DBMS?
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Purchase

pi d=pi d

ci d=ci d

Customer

Product
Purchase
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Taxonomy for
Parallel Query Evaluation

• Inter-query parallelism
– Each query runs on one processor

•
–
–

•
–
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Parallel Query Processing
How do we compute these operations on a shared-
nothing parallel db?

• Selection:  σA=123(R)

• Group-by:  γA,sum(B)(R)

• Join:  R ⋈ S

Before we answer that: how do we store R (and S) on a 
shared-nothing parallel db?
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Horizontal Data Partitioning
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1 2 P .  .  .

Data: Servers:

K A B
… …

Horizontal Data Partitioning
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K A B
… …

1 2 P .  .  .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Horizontal Data Partitioning
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K A B
… …

1 2 P .  .  .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?
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Horizontal Data Partitioning
• Relation R split into P chunks R0, …, RP-1, stored at 

the P nodes

• Block partitioned
– Each group of k tuples goes to a different node

• Hash based partitioning on attribute A:
– Tuple t to chunk h(t.A) mod P

• Range based partitioning on attribute A:
– Tuple t to chunk i if vi-1 < t.A < vi

43CSE 444 - Spring 2016

Uniform Data v.s. Skewed Data
• Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

• Range-partition
– On the key K
– On the attribute A
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Uniform Data v.s. Skewed Data
• Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

• Range-partition
– On the key K
– On the attribute A

Uniform

Uniform Assuming uniform
hash function
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Uniform Data v.s. Skewed Data
• Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

• Range-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming uniform
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition
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Uniform Data v.s. Skewed Data
• Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

• Range-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming uniform
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

May be skewed Difficult to partition
the range of A uniformly. 
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Data Partitioning Revisited

What are the pros and cons ?

• Block based partitioning
– Good load balance but always needs to read all the data

• Hash based partitioning 
– Good load balance
– Can avoid reading all the data for equality selections

• Range based partitioning
– Can suffer from skew (i.e., load imbalances)
– Can help reduce skew by creating uneven partitions

48CSE 444 - Spring 2016
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Horizontal Data Partitioning

All three choices are just special cases:

• For each tuple, compute bin = f(t)

• Different properties of the function f determine 
hash vs. range vs. round robin vs. anything
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Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

• On a conventional database: cost = B(R)

• Q: What is the cost on a parallel database with 
P processors ?
– Block partitioned
– Hash partitioned
– Range partitioned

50CSE 444 - Spring 2016

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

• On a conventional database: cost = B(R)

• Q: What is the cost on a parallel database with 
P processors ? A: B(R) / P, but
– Block partitioned -- all servers do the work
– Hash partitioned -- one server does the work
– Range partitioned -- some servers do the work

51CSE 444 - Spring 2016

Basic Parallel GroupBy

Data: R(K,A,B,C)  -- hash-partitioned on K
Query: γA,sum(B)(R)

52

R1 R2 RP .  .  .

R1’ R2’ RP’

.  .  .

Reshuffle R
on attribute A
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Basic Parallel GroupBy

• Step 1: each server i partitions its chunk Ri using 
a hash function h(t.A) mod P: Ri,0, Ri,1, …, Ri,P-1

• Step 2:  server j computes γA, sum(B) on 
R0,j, R1,j, …, RP-1,j
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Basic Parallel GroupBy

Compute γA,sum(B)(R)

• On a conventional database: cost = B(R)

• Q: What is the cost on a parallel database with 
P processors ?

54CSE 444 - Spring 2016
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Basic Parallel GroupBy

Compute γA,sum(B)(R)

• On a conventional database: cost = B(R)

• Q: What is the cost on a parallel database with 
P processors ?

• A: B(R) / P

55CSE 444 - Spring 2016

Basic Parallel GroupBy

Can we do better?
• Sum?
• Count?
• Avg?
• Max?
• Median?
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Basic Parallel GroupBy

Can we do better?
• Sum?
• Count?
• Avg?
• Max?
• Median?
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Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) = 
sum(B)/count(B)

median(B)

Parallel Join:  R ⋈A=B S

• Data: R(K1,A, C), S(K2, B, D)
• Query: R(K1,A,C) ⋈ S(K2,B,D)
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Initially, both R and S are horizontally partitioned on K1 and K2

R1, S1 R2, S2 RP, SP 

Parallel Join:  R ⋈A=B S

• Data: R(K1,A, C), S(K2, B, D)
• Query: R(K1,A,C) ⋈ S(K2,B,D)
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R1, S1 R2, S2 RP, SP .  .  .

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally
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Initially, both R and S are horizontally partitioned on K1 and K2

Parallel Join:  R ⋈A=B S

• Step 1
– Every server holding any chunk of R partitions its 

chunk using a hash function h(t.A) mod P
– Every server holding any chunk of S partitions its 

chunk using a hash function h(t.B) mod P

• Step 2: 
– Each server computes the join of its local fragment 

of R with its local fragment of S

60CSE 444 - Spring 2016
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Parallel Join:  R ⋈A=B S

Compute R ⋈A=B S

• On a conventional database: cost = B(R)+B(S)

• Q: What is the cost on a parallel database with 
P processors ?
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Parallel Join:  R ⋈A=B S

Compute R ⋈A=B S

• On a conventional database: cost = B(R)+B(S)

• Q: What is the cost on a parallel database with 
P processors ?

• A: (B(R)+B(S)) / P
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Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is the 
new running time?

• If we double both P and the size of R, what is 
the new running time?
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Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is the 
new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is 
the new running time?
– Same (each server holds the same # of chunks)
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Optimization for Small Relations

When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across nodes

• Also called a small join or a broadcast join
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Other Interesting Parallel
Join Implementation

Skew:
• Some partitions get more input tuples than others

Reasons:
– Range-partition instead of hash
– Some values are very popular: 

• Heavy hitters values;  e.g. ‘Justin Bieber’

– Selection before join with different selectivities

• Some partitions generate more output tuples than 
others
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Some Skew Handling Techniques
If using range partition:

• Ensure each range gets same number of tuples

• E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

• Eq-depth v.s. eq-width histograms
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Some Skew Handling Techniques
Create more partitions than nodes

• And be smart about scheduling the partitions

• Note: MapReduce uses this technique
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Some Skew Handling Techniques
Use subset-replicate (a.k.a. “skewedJoin”)
• Given R ⋈A=B S
• Given a heavy hitter value R.A = ‘v’

(i.e. ‘v’ occurs very many times in R)
• Partition R tuples with value ‘v’ across all nodes

e.g. block-partition, or hash on other attributes
• Replicate S tuples with value ‘v’ to all nodes
• R = the build relation
• S = the probe relation
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Parallel Query Evaluation

• Parallel query plan: tree of parallel operators
Intra-operator parallelism
– Data streams from one operator to the next
– Typically all cluster nodes process all operators

• Can run multiple queries at the same time
Inter-query parallelism
– Queries will share the nodes in the cluster
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Parallel Query Evaluation
New operator: Shuffle 
• Origin: Exchange operator from Volcano system
• Serves to re-shuffle data between processes

– Handles data routing, buffering, and flow control
• Two parts: ShuffleProducer and ShuffleConsum er
• Producer:

– Pulls data from child operator and sends to n consumers
– Producer acts as driver for operators below it in query plan

• Consumer:
– Buffers input data from n producers and makes it available 

to operator through getNext() interface
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Example: Teradata – Loading

AMP = “Access Module Processor” = unit of parallelism
CSE 444 - Spring 2016
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Example: Teradata – Query Execution

SELECT * 
FROM Order o, Line i

WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered
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Order(oid, item, date), Line(item, …)

Query Execution
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AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

s elec t

s c an

date = today ()

o.i tem = i .i tem

Order o

Order(oid, item, date), Line(item, …)

Query Execution
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AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

s c an
date = today ()

o.i tem = i .i tem

Order o
Item i

Order(oid, item, date), Line(item, …)

Query Execution
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AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all 
lines where hash(item) = 1

contains all orders and all 
lines where hash(item) = 2

contains all orders and all 
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)


