CSE 444: Database Internals

Lectures 17-19
Transactions: Recovery

CSE 444 - Spiing 2016 1

The Usual Reminders

* Lab 3 part 1is due today
—Lab 3 is due next week on Monday

* HW3 is due on Thursday

CSE 444 - Spiing 2016

Readings for Lectures 17-19

Main textbook (Garcia-Molina)

* Ch.17.2-4,18.1-3, 18.8-9

Second textbook (Ramakrishnan)

+ Ch. 16-18

Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science

and Engineering, A. Tucker, ed., CRC Press,
Boca Raton, 1997.

CSE 444 - Spiing 2016 3

Transaction Management
Two parts:
+ Concurrency control: ~ ACID

* Recovery from crashes: ACID

We already discussed concurrency control
You are implementing locking in lab3

Today, we start recovery

CSE 444 - Sping 2016

System Crash

Client 1:
BEGIN TRANSACTION
UPDATE Account1

SET balance= balance — 500 2 E
{ Crash!

UPDATE Account2
SET balance = balance + 500
COMMIT

CSE 444 - Spiing 2016 5

Recovery

Type of Crash Prevention

Constraints and

Wrong data entry Data cleaning

Redundancy:

Disk h
ISk crashes e.g. RAID, archive

Data center failures Remate backups or

replicas
System failures: DATABASE
e.g. power RECOVERY

5/2/16

System Failures
* Each transaction has internal state

* When systemcrashes, internal state is lost
— Don’'t know which parts executed and which didn’t
— Need ability to undo and redo

CSE 444 - Spiing 2016 7

reap Buffer Manager Review
WRITE Page requests from higher-level code

Files and access methods
Buffer pool manager

Buffer pool

Disk page

Main
Free frame =—— memory

INPUT
OUTPUT
Disk = collection
of blocks 1 page corresponds

to 1 disk block

choice of frame dictateq
by replacement policy

Data must be in RAM for DBMS to operate on it!

Buffer pool = table of <frame#, pageid> pairs

Buffer Manager Review

» Enables higher layers of the DBMS to
assume that needed data is in main memory

» Caches data in memory. Problems when
crash occurs:
— If committed data was not yet written to disk
— If uncommitted data was flushed to disk

CSE 444 - Spiing 2016 9

Transactions

» Assumption: the database is composed
of elements.

* 1 elementcan be either:
—1page = physicallogging
— 1 record = logical logging
+ Aries uses both (will discuss later)

CSE 444 - Sping 2016 10

Primitive Operations of

Transactions

* READ(X,t)

— copy element X to transaction local variable t
+ WRITE(X,t)

— copy transaction local variable t to element X
« INPUT(X)

— read element X to memory buffer
* OUTPUT(X)

— write element X to disk

CSE 444 - Spiing 2016 "

Running Example

BEGIN TRANSACTION
READ(A 1);
t:= t*2‘ Initially, A=B=8.
WR'TE(A,t). Atomicity requires that either
X mT its and A=B=16,
READ(B't)’ 2T Zzer:nsmln; igmmit and Ac:B=8.
ti=t*2;
WRITE(B,t)
COMMIT;

CSE 444 - Spring 2016 12

5/2/16

Is this bad ?

READ(A,t); t :=t2; WRITEA,1)
READ(B,t); t := t2; WRITE@,1)
‘ Transaction Buffer pool Disk
Action t Mem A | Mem B | Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT 3
Yes it's bad: A=16, B=8....
Action t Mem A | Mem B | Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8%
OUTPUT(B) 16 16 16 16 1
COMMIT fs
Is this bad ?| |Yes it's bad: A=B=16, but not committed
Action t Mem A | Mem B | Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT ==

Action t Mem A | Mem B | Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8

t:=t"2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8 ~~
OUTPUT(B) 16 16 16 16 1%

COMMIT fe

Action t Mem A | Mem B | Disk A Disk B
INPUT (A) 8 8 8
READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT (B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

COMMIT {E]ag?

Action t Mem A | Mem B | Disk A Disk B
INPUT (A) 8 8 8
READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 I~

OUTPUT(A) 16 16 16 16 Sii
OUTPUT(B) 16 16 16 16 16
COMMIT 8

5/2/16

Is this bad ? No: that's OK

Action t Mem A | Mem B | Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 I~
OUTPUT(A) 16 16 16 16 fgi&
OUTPUT(B) 16 16 16 16 16

COMMIT 9

OUTPUT can also happen after COMMIT (details coming)
Action t Mem A | Mem B | Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
ti=t'2 16 8 8 8
WRITEAY | 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B.) 8 16 8 8 8
t:=t72 16 16 8 8 8
WRITEB,Y) | 16 16 16 8 8
COMMIT
output(a) | 16 16 16 16 8
outpuT®) | 16 16 16 16 16 o

OUTPUT can also happen after COMMIT (details coming]

Action t Mem A | Mem B | Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8

t=t*2 16 8 8 8

WRITE(At) 16 16 8 8

INPUT (B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT g}:‘;ﬁ?
OUTPUT(A) 16 16 16 16
OUTPUT(B) 16 16 16 16 16 |21

Force/No-steal

* FORCE: Pages of committed
transactions must be forced to disk
before commit

* NO-STEAL: Pages of uncommitted
transactions cannot be written to disk

Easy to implement (how?) and ensures atomicity

CSE 444 - Spiing 2016 23

Atomic Transactions

* FORCE or NO-FORCE
— Should all updates of a transaction be forced to
disk before the transaction commits?
* STEAL or NO-STEAL

— Can an update made by an uncommitted
transaction overwrite the most recent committed
value of adata item on disk?

CSE 444 - Sping 2016 2

No-Force/Steal

* NO-FORCE: Pages of committed
transactions need not be written to disk

» STEAL: Pages of uncommitted
transactions may be written to disk

In either

case, need a Write Ahead Log (WAL)

to provide atomicity in face of failures

CSE 444 - Spring 2016 24

5/2/16

Write-Ahead Log (WAL)

The Log: append-only file containing log records
» Records every single action of every TXN

» Forces log entries to disk as needed

« After a systemcrash, use log to recover
Three types: UNDO, REDO, UNDO-REDO

Aries: is an UNDO-REDO log

CSE 444 - Spiing 2016 2

Policies and Logs

NO-STEAL STEAL
Undo Log

Undo-Redo Log

FORCE
NO-FORCE

Redo Log

CSE 444 - Spiing 2016 2%

UNDO Log

Undo Logging

Log records
+ <START T>
— transaction T has begun
« <COMMIT T>
— T has committed
+ <ABORT T>
— T has aborted
e <T,X,v>
— T has updated element X, and its o/d value was v
— ldempotent, physical log records

FORCE and STEAL
CSE 444 - Sping 2016 27
Action t Mem A | Mem B | Disk A | Disk B | UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <TA8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t"2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <TB,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>
TSE 77~ Sping 2076 v

CSE 444 - Sping 2016 2
Action t Mem A | Mem B | Disk A | Disk B | UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A)| 16 16 16 16 8 {E{’ﬁ?
OUTPUT(B)| 16 16 16 16 16 i
COMMIT <COMMIT T>
[WHAT DOWE DO 7™ ™™™ ™ v

5/2/16

Action t Mem A | Mem B | Disk A | Disk B | UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <TA,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A)| 16 16 16 16 8 {E‘Eﬁ’
OUTPUT(B)| 16 16 16 16 16 i
COMMIT <COMMIT T>
|WHAT DOWEDO ’7| We UNDO by setting B=8 and A=8

Action t Mem A | Mem B | Disk A | Disk B | UNDO Log
<START T>
INPUT (A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8 <TA,8>
INPUT (B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A)| 16 16 16 16 8
OUTPUT(B)| 16 16 16 16 16
COMMIT <COMMIT T>
[What do we do now ? [7 7 {f’j,_,a.’

Action t Mem A | Mem B | Disk A | Disk B | UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t2 16 8 8 8
WRITE(A,t) 16 16 8 8 <TA,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A)| 16 16 16 16 8
OUTPUT(B)] 16 16 16 16 16
COMMIT <COMMIT

[What do we do now ? [[Nothing: log contains COMMI

After Crash

¢ In the first example:
— We UNDO both changes: A=8, B=8

— The transaction is atomic, since none of its actions have
been executed

* In the second example
— We don't undo anything
— The transaction is atomic, since both it's actions have been
executed

CSE 444 - Sping 2016 k]

Recovery with Undo Log
After system’s crash, run recovery manager

« Decide for each transaction T whether it is
completed or not

— <START T>....<COMMIT T>.... =yes
— <START T>....<ABORT T>....... =yes
—<START T>....ccoiiiii, =no

* Undo all modifications by incomplete
transactions

CSE 444 - Spiing 2016 35

Recovery with Undo Log

Recovery manager:

* Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>:if T is not completed

then write X=v to disk
elseignore
<START T>: ignore

CSE 444 - Spring 2016 36

5/2/16

Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>

Question 2:
How far back do we need to
<START T5> readin thelog ?
<START T4> _
<T1,X1v1> Question 3:
<T5,X5,v5> What happens if second
<T4 X4,v4> crash during recovery?
<COMMIT T55
<T3,X3,v3>

<T2,X2,v§§wh !;I? @

Recovery with Undo Log

<T2,X2 vé§ :h lg’dem potent. Can reapply,

Question1: Which updates
are undone ?
<T6,X6,v6>

Question 2:
How far back do we need to
<START T5> read in the log ?
<START T4> To the beginning.
<T1,X1v1>
<T5,X5,v5> Question 3:
<T4,X4,v4> What happens if second
<COMMIT 755 crash during recovery?
<T3,X3,v3> No problem! Log records are

Action t Mem A | Mem B I Disk A | Disk B | UNDO Log
— <START T>
INPUT(A) / When must 8
READAL) | 8 \ we force pages)8
t=t2 16 8\\t° dslo // 8
WRITEA | 16 16 8 8 A4
INPUT(B) 16 16 8 8 8
READGB,Y) | 8 16 8 8 8 D
t:=t*2 16 16 8 8 8 "
WRITEB,t)| 16 16 16 8 8 <18,8>
OUﬂFbT(A)@ﬂi 16 16 16 8 v
OU]IFUT(B) £ 16 16 16 16 16
COMMIT <COMMIT T>
CSE 444 - Sping 2016 39

Action t Mem A | Mem B | Disk A | Disk B | UNDO Log
<START T>
INPUT(A) 8 8 8
READALL) [8 8 8 8
t=t"2 16 8 8 8
WRITEAY| 16 16 8 8 /GT,A,8>)
INPUT (B) 16 16 8 8 8
READB,t) | 8 16 81 8 8
t=t22 16 8 8 8
WRITE(B,) 16 16 8 8 —GT,B,8>3
\GUTPUT@ 16 16 | 46— 16 8
m% 16 16 16 16
“COMMTT FEREE—{CommiT 1)
|RULES: log entry pefore OUTPUT pefore COMMIT|

Undo-Logging Rules

U1: If T modifies X, then <T,X,v>must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must
be written to disk before <COMMIT T>

* Hence: OUTPUTSs are done early,
before the transaction commits

CSE 444 - Spiing 2016 4

Checkpointing

Checkpoint the database periodically

» Stop accepting new transactions

* Wait until all current transactions
complete

* Flush log to disk

* Write a <CKPT> log record, flush

* Resume transactions

CSE 444 - Spring 2016 42

5/2/16

Undo Recovery with
Checkpointing

<Tox9v9>)
. other transactions

During recovery, (alllcomp\eted)

<CKPT>
Can stop at first STARTT2>

<CKPT> <STARTT3
<STARTT5>
<START T4>
<T1X1v1>
<T5X5v5> transactions T2,T3,T4,T5
<T4X4v4>
<COMMIT T5>
<T3X3v3>
<T2X2v2>

Nonquiescent Checkpointing

* Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active
transactions. Flush log to disk

» Continue normal operation

* When all of T1,...,Tk have completed,
write <END C"éEJi;MFZIOEéSh logtodisk

Undo Recovery with
Nonquiescent Checkpointing

. earlier transactions plus
During recovery, 4, T5,T6

Can stop at first
<CKPT>

<START CKPT T4, T5, T6>

T4, T5, T6, plus
later transactions

<END CKPT>

Q: why do we need
<END CKPT> Not reall

’ later transactions

47

Nonquiescent Checkpointing

* Problem with checkpointing: database
freezes during checkpoint

* Would like to checkpoint while database
is operational

+ Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

CSE 444 - Spiing 2016 P

Undo Recovery with
Nonquiescent Checkpointing

. earlier transactions plus
During recovery, 4, 7576

Canstop atfirst |...
<START CKPT T4, T5, T6>

<CKPT>
’T4, T5, T6, plus
ZEND CKPT> later transactions
’ later transactions
Q: why do we need
<END CKPT> ? L

Implementing ROLLBACK

» Recall: a transaction can end in COMMIT
or ROLLBACK

* |dea: use the undo-log to implement
ROLLBACK

* How ?
—LSN = Log Sequence Number

— Log entries for the same transaction are
linked, using the LSN'’s

—Read log in reverse, using LSN pointers

CSE 444 - Spring 2016 48

5/2/16

REDO Log

NO-FORCE and NO-STEAL

CSE 444 - Sping 2016

Ssrcmn !
16

Is this bad ?
Action t Mem A | Mem B | Disk A | Disk B
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A), 16 16 16 16
OUTPUT(B), 16 16 16 16
49 CSE 444 - Spiing 2016

[Yes, it's bad: A=16, B=8]|

Action t Mem A | Mem B | Disk A | Disk B
READ(A,t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(At) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A)| 16 16 16 16
OUTPUT(B)| 16 16 16 16

CSE 444 - Sping 2016

| Yes, it's bad: lost update |

Action t Mem A | Mem B | Disk A | Disk B
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A)| 16 16 16 16 8 {
OUTPUT(B)| 16 16 16 16 16

CSE 444 - Spiing 2016

Crash 1

Is this bad ?
Action t Mem A | Mem B | Disk A | Disk B
READ(A, t) 8 8 8 8
t:=t2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B, t) 8 16 8 8 8
t:=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT S
OUTPUT(A) 16 16 16 16 8 i‘
OUTPUT(B) 16 16 16 16 16
51 CSE 444 - Spiing 2016 52
Is this bad ?
Action t Mem A | Mem B | Disk A | Disk B
READ(A, t) 8 8 8 8
t:=t*2 16 8 8 8
WRITEAL)| 16 16 8 8
READ(B, t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 ‘:E:E?
COMMIT =
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
53 CSE 444 - Spring 2016 54

5/2/16

Is this bad ?

No: that's OK.

Redo Logging

One minor change to the undo log:

* <T,X,v>=T has updated element X, and
its new value is v

CSE 444 - Spiing 2016

Action t Mem A | Mem B | Disk A | Disk B | REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8 <TA, 16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A)| 16 16 16 16 8 ol
OUTPUT(B)] 16 16 16 16 16 %‘

[How do we recover ?| ose s - sping 2016

Action t Mem A | Mem B | Disk A | Disk B
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 ~/~
coMmIT =
OUTPUT(A)| 16 16 16 16 8
OUTPUT(B)| 16 16 16 16 16
CSE 444 - Spiing 2016 55
Action t Mem A | Mem B | Disk A | Disk B | REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <TA, 16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A)| 16 16 16 16 8
OUTPUT(B)| 16 16 16 16 16
CSE 444 - Sping 2016 57
Action t Mem A | Mem B | Disk A | Disk B | REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <TA, 16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A)| 16 16 16 16 8
OUTPUT(B)| 16 16 16 16 16 %‘—

[How do we recover ?| {We REDO by setting A=16 and B=16

Recovery with Redo Log

After system’s crash, run recovery manager
» Step 1. Decide for each transaction T whether
it is committed or not

— <START T>....<COMMIT T>....
— <START T>....<ABORT T>
— <START T>

= yes
=no
=no

» Step 2. Read log from the beginning, redo all
updates of committed transactions

CSE 444 - Spring 2016

5/2/16

10

Recovery with Redo Log

<START T1>
<T1,X1v1>
<START T2>
<T2, X2,v2>
<START T3>
<T1,X3,v3>
<COMMIT T2
<T3,X4,v4>

CSE 444 - Spiing 2016

Show actions
during recovery
<T1,X5,52
; Crash! E

Nonquiescent Checkpointing

* Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active txn’s

* Flush to disk all blocks of committed
transactions (dirty blocks)

+ Meantime, continue normal operation
* When all blocks have been written, write

<END CKPT>
CSE 444 - Spiing 2016 62
Action t | memA | —————a | piskB | REDO Log
When must <START T>
READ(A,1) 8 & we force pages }
_lo disk ?
t:=t"2 16 8 8
WRITEAL| 16 16 8 8 <TA 6>
READB) | 8 16 8 8 8
t:=t%2 16 16 8 8 8
-
WRITEB.t)| 16 16 16 8 8 <T.8.16>
COMMIT <COMMIT T>
/N
OoUTKUF(A) 16 16 16 16 8
g
ouTRUTE)Z 16 16 16 16 16
WV
CSE 444 - Spring 2016 64

Nonquiescent Checkpointing
<STARTT1>
<COMMIT T1>
Step 1: look for |<sTARTTs> Step 2: redo
The last <START CKPTT4, T5, T6> fr°".‘ the
<END CKPT> . earliest
start of
T4,T5,T6
LT N | ey
known to be on disk transactions
—:<::START CKPTT9, T10> :g:ﬂg:med
63
Action t Mem A | Mem B | Disk A | Disk B | REDO Log
<START T>
READAL) | 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,16>
READBY | 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
CoMMIT NO-STEAL {CommiT I
Greuta) 16 16 16_| 46—75 |
U l—16 | 16 16 16 16

[RULE: OUTPUT after COMMI'I]

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v>and
<COMMIT T> must be written to disk
before OUTPUT(X)

NO-STEAL

* Hence: OUTPUTs are done late

CSE 444 - Spring 2016 66

5/2/16

11

Comparison Undo/Redo

* Undo logging: OUTPUT must be
done early:
—Inefficient

* Redo logging: OUTPUT must be
done late:

—Inflexible

CSE 444 - Spiing 2016 67

Comparison Undo/Redo
» Undo logging:
— OUTPUT must be done early

— If <COMMIT T> is seen, T definitely has written all its data to
disk (hence, dont need to redo) — inefficient

» Redo logging |No-Steal/No-Force |
— OUTPUT must be done late

— If <COMMIT T> is not seen, T definitely has not written any
of its data to disk (hence there is not dirty data on disk, no
need to undo) - inflexible

* Would like more flexibility on when to OUTPUT:

undo/redo logging (next) e NoFocs

CSE 444 - Spiing 2016 68

Undo/Redo Logging

Log records, only one change

* <T,X,u,v>=T has updated element X, its
old value was u, and its new value is v

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

CSE 444 - Sping 2016 70

CSE 444 - Sping 2016 69
Action T Mem A | Mem B | Disk A | Disk B Log
<START T>
REAT(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A)| 16 16 16 16 8
<COMMIT T>
OUTPUT(B)| 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT7

Recovery with Undo/Redo Log

After system'’s crash, run recovery manager
* Redo all committed transaction, top-down
* Undo all uncommitted transactions, bottom-up

CSE 444 - Spring 2016 72

5/2/16

12

5/2/16

Recovery with Undo/Redo Log

<START T1>
<T1,X1,v1>

<START T2>
<T2, X2, v2> ARI ES
<START T3>
<T1,X3,v3>

<COMMIT T2
<T3,X4,v4>
<T1,X5,v5>

CSE 444 - Spiing 2016 73 CSE 444 - Spiing 2016 74

Aries Log Granularity

Two basic types of log records for update operations
+ ARIES pieces together several techniques into a « Physical log records
comprehensive algorithm

» Developed at IBM Almaden, by Mohan
» IBMbotched the patent, so everyone uses it now

» Several variations, e.g. for distributed
transactions

— Position on a particular page where update occurred
— Both before and after image for undo/redo logs
— Benefits: Idempotent & updates are fast to redo/undo

» Logical log records
— Record only high-level information about the operation
— Benefit: Smaller log

— BUT difficult to implement because crashes can occur in
the middle of an operation

CSE 444 - Sping 2016 75 CSE 444 - Spiing 2016 76
Granularity in ARIES ARIES Recovery Manager
* Physiological logging Log entries:
— Log records refer to a single page + <START T> -- when Tbegins
— But record logical operation within the page « Update: <T,X,u,v>
° Page'oriented |0gg|ng for REDO -T updates X, %jvame:u’ new value=v
— Necessary since can crash in middle of complex op. — Logical description of the change
* Logical logging for UNDO * <COMMIT T> or <ABORT T> then <END>
— Enables tuple-level locking! + <CLR> —we'll talk about them later.
— Must do logical undo because ARIES will only undo
loser transactions (this also facilitates ROLLBACKS)
CSE 444 - Spiing 2016 ”n CSE 444 - Spring 2016 78

13

ARIES Recovery Manager

Rule:

« If T modifies X, then <T,X,u,v> must be
written to disk before OUTPUT(X)

We are free to OUTPUT early or late

CSE 444 - Spiing 2016 79

LSN = Log Sequence Number
LSN = identifier of alog entry

— Log entries belonging to the same TXN are linked

Each page contains a pageLSN:
—LSN of log record for latest update to that page

CSE 444 - Spiing 2016 80

ARIES Data Structures

Active Transactions Table

— Lists all active TXN’s

— For each TXN: lastLSN = its most recent update LSN

Dirty Page Table

— Lists all dirty pages

— For each dirty page: recoveryLSN (recLSN)= first LSN
that caused page to become dirty

Write Ahead Log

— LSN, prevLSN = previous LSN for same txn

CSE 444 - Spiing 2016 81

Wr100(P7)

Wor200(P5)

Wr00(P6)

wers | ARIES Data Structures
irty pages Log (WAL)

pagelD recLSN LSN | prevLSN | transID | pagelD | Log entry
P5 102 101 |- T100 |P7

P6 103 102 |- T200 |P5

P7 101 103 | 102 T200 |P6

104 |101 T100__|P5

Active transactions Buffer Pool

transID lastLSN P2

T100 104

T200 103

P5 P6 P7
PageLSN=104 | PageLSN=103

PageLSN=101

ARIES Normal Operation

T writes page P
* What dowe do ?

CSE 444 - Spiing 2016 83

ARIES Normal Operation

T writes page P
* What dowe do ?

* Write <T,P,u,v> in the Log
* pageLSN=LSN

* prevLSN=lastLSN

* lastLSN=LSN

* recLSN=if isNull then LSN

CSE 444 - Spring 2016 84

5/2/16

14

ARIES Normal Operation

Buffermanagerwants to OUTPUT(P)
* What dowe do ?

Buffermanagerwants INPUT(P)
* What dowe do ?

CSE 444 - Sping 2016 85

ARIES Normal Operation

Buffermanagerwants to OUTPUT(P)
* Flush log up to pageLSN

* Remove P from Dirty Pages table
Buffermanagerwants INPUT(P)

» Create entry in Dirty Pages table
recLSN =NULL

CSE 444 - Spiing 2016 8

ARIES Normal Operation

Transaction T starts
 What dowe do ?

Transaction T commits/aborts
* What dowe do ?

CSE 444 - Sping 2016 &7

ARIES Normal Operation

Transaction T starts
» Write <START T> in the log

* New entry T in Active TXN;
lastLSN = null

Transaction T commits

* Write <COMMIT T> in the log
* Flushlog up to this entry

+ Write <END>

CSE 444 - Sping 2016 88

Checkpoints

Write into the log

» Entire active transactions table
» Entire dirty pagestable

|Recovery always starts by analyzing Iatestcheckpoir*

Background process periodically flushes dirty pages to disk

CSE 444 - Spiing 2016 89

ARIES Recovery

. Analysis pass

— Figure out what was going on at time of crash
— List of dirty pages and active transactions

. Redo pass (repeating history principle)

— Redo all operations, even for transactions that will not commit

— Get back to state at the moment of the crash

. Undo pass

— Remove effects of all uncommitted transactions
— Log changes during undo in case of another crash during undo

CSE 444 - Spring 2016 90

5/2/16

15

ARIES Method lllustration

First update
potentially Checkpoint End of Log

lost during crash

} } f } Logtime —

Analysis
Redo
Undo

T\thre 3: The Three Passes of ARIES Restart

A

irst undo and first redo log entry might be
in reverse order

[Figure 3 from Franklin97]

CSE 444 - Spiing 2016 o

1. Analysis Phase

* Goal
— Determine point in log where to start REDO
— Determine set of dirty pages when crashed
« Conservative estimate of dirty pages
— ldentify active transactions when crashed

* Approach
— Rebuild active transactions table and dirty pages table
— Reprocess the log from the checkpoint
« Only update the two data structures
— Compute: firstLSN = smallest of all recoveryLSN

CSE 444 - Spiing 2016 %2

1. Analysis Phase

Log Checkpoint (crash)

Where do we start

firstLSN= 722
the REDO phase ?

Dirty
pages

pagelD | recLSN | pagelD

Active transID | lastLSN | transID

1. Analysis Phase

Log Checkpoint (crash)

»
»

firstLSN=Min(refLSN)

Dirty
pages

pagelD | recLSN | pagelD

Active transID | lastLSN | transID

txn

CSE 444 - Sping 2016 o

5/2/16

txn
CSE 444 - Sping 2016 93
1. Analysis Phase
Log Checkpoint (crash)
firstLSN 4 |)
Dirty epl
ID | recLSN ID play
pages pagelD | reci pagel history pagelD | recLSN | pagelD

Active translD | lastLSN | transID

transID !lastLSN !transID

txn

TSE 244 ~Spiing 2016 %

2. Redo Phase

Main principle: replay history

» Process Log forward, starting from
firstLSN

* Read every log record, sequentially

* Redo actions are notrecorded in the log

* Needsthe Dirty Page Table

CSE 444 - Spring 2016 9%

16

2. Redo Phase: Details

For each Log entryrecord LSN: <T,P,u,v>

* Re-do the action P=u and WRITE(P)

» Butwhich actions can we skip, for
efficiency ?

CSE 444 - Spiing 2016 97

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
 If Pis notin Dirty Page then no update
* If recLSN> LSN, then no update

* Read page from disk:
If pageLSN >LSN, then no update

* Otherwise perform update

CSE 444 - Spiing 2016 9%

2. Redo Phase: Details

What happens if system crashes during
REDO ?

CSE 444 - Spiing 2016 %

2. Redo Phase: Details

What happens if system crashes during
REDO ?

We REDO again! The pageLSN will ensure
that we do notreapply a change twice

CSE 444 - Sping 2016 100

5/2/16

3. Undo Phase

« Cannot “unplay” history, in the same
way as we “replay” history
*« WHY NOT ?

CSE 444 - Spiing 2016 101

3. Undo Phase

« Cannot “unplay” history, in the same
way as we ‘replay” history

« WHY NOT ?
—Undo only the loser transactions

— Need to support ROLLBACK: selective
undo, for one transaction

* Hence, logical undo v.s. physical redo

CSE 444 - Spring 2016 102

17

3. Undo Phase

Main principle: “logical” undo
» Start fromend of Log, move backwards
» Read only affected log entries

* Undo actions are written in the Log as special
entries: CLR (Compensating Log Records)

» CLRs are redone, but never undone

CSE 444 - Sping 2016 103

3. Undo Phase: Details

» “Losertransactions” = uncommitted
transactions in Active Transactions Table

* ToUndo = set of lastLSN of loser transactions

CSE 444 - Spiing 2016 104

3. Undo Phase: Details

While ToUndo not empty:
» Choose most recent (largest) LSN in ToUndo
* IfLSN = regular record <T,P,u,v>:

— Undo v

— Write a CLR where CLR.undoNextLSN = LSN.prevLSN

e IfLSN = CLR record:

— Don't undo !

¢ if CLR.undoNextLSN not null, insertin ToUndo
otherwise, write <END> inlog

CSE 444 - Sping 2016 105

3. Undo Phase: Details

% CLR FOR CLR FOR
LN 30 LSN 20
< .

Write Write Write
page 1 page 1 page 1

Log (time —) |

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]

CSE 444 - Sping 2016 106

3. Undo Phase: Details

What happens if system crashes during
UNDO ?

CSE 444 - Spiing 2016 107

3. Undo Phase: Details

What happens if system crashes during
UNDO ?

We do not UNDO again! Instead, each CLR
is a REDO record: we simply redo the
undo

CSE 444 - Spring 2016 108

5/2/16

18

