
1

CSE 444: Database Internals

Lectures 14
Transactions: Locking

1CSE 444 - Spring 2016

Announcements

• Lab 2 is due tonight

• Lab 2 quiz is on Wednesday in class
– Same format as lab 1 quiz

• Lab 3 is available
– Fastest way to do lab 3 is to do it very slowly

• Hw5 is due on Friday
CSE 444 - Spring 2016 2

Review of Schedules

Serializability

• Serial
• Serializable
• Conflict serializable
• View serializable

Recoverability

• Recoverable
• Avoids cascading 

aborts

CSE 444 - Spring 2016 3

Scheduler

• The scheduler:
• Module that schedules the transaction’s actions, 

ensuring serializability

• Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation

CSE 444 - Spring 2016 4

Pessimistic Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the lock 

before reading/writing that element
• If the lock is taken by another transaction, 

then wait
• The transaction must release the lock(s)

CSE 444 - Spring 2016 5

Notation

CSE 444 - Spring 2016 6

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A



2

A Non-Serializable Schedule

CSE 444 - Spring 2016 7

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

Example

8

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B); 

CSE 444 - Spring 2016Scheduler has ensured a conflict-serializable schedule

But…

9

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

CSE 444 - Spring 2016Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

The 2PL rule:

• In every transaction, all lock requests must 
precede all unlock requests

• This ensures conflict serializability !  (will 
prove this shortly)

CSE 444 - Spring 2016 10

Example: 2PL transactions

11

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A) 

L2(A); READ(A,s)
s := s*2
WRITE(A,s); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); 

CSE 444 - Spring 2016Now it is conflict-serializable

Example with Multiple 
Transactions

Equivalent to each transaction executing entirely 
the moment it enters shrinking phase

CSE 444 - Spring 2016 12

T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3



3

Two Phase Locking (2PL)

13

Theorem: 2PL ensures conflict serializability

CSE 444 - Spring 2016

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

CSE 444 - Spring 2016 14

Two Phase Locking (2PL)

15

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

CSE 444 - Spring 2016

Two Phase Locking (2PL)

16

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)    why?

CSE 444 - Spring 2016

Two Phase Locking (2PL)

17

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) 
L2(A)àU2(B)      why?

CSE 444 - Spring 2016

Two Phase Locking (2PL)

18

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

CSE 444 - Spring 2016

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction



4

A New Problem: 
Non-recoverable Schedule

19

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A) 

L2(A); READ(A,s)
s := s*2
WRITE(A,s); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); 
Commit

Abort
CSE 444 - Spring 2016

Strict 2PL

• Strict 2PL: All locks held by a transaction are 
released when the transaction is completed; 
release happens at the time of COMMIT or 
ROLLBACK

• Schedule is recoverable
• Schedule avoids cascading aborts
• Schedule is strict: read book

CSE 444 - Spring 2016 20

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A); 

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B); 
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A); 
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit 21

Summary of Strict 2PL

• Ensures serializability, recoverability, and 
avoids cascading aborts

• Issues: implementation, lock modes, 
granularity, deadlocks, performance

CSE 444 - Spring 2016 22

The Locking Scheduler

Task 1: -- act on behalf of the transaction

Add lock/unlock requests to transactions
• Examine all READ(A) or WRITE(A) actions
• Add appropriate lock requests
• On COMMIT/ROLLBACK release all locks
• Ensures Strict 2PL !

CSE 444 - Spring 2016 23

The Locking Scheduler

Task 2: -- act on behalf of the system
Execute the locks accordingly

• Lock table: a big, critical data structure in a DBMS !
• When a lock is requested, check the lock table

– Grant, or add the transaction to the element’s wait list

• When a lock is released, re-activate a transaction 
from its wait list

• When a transaction aborts, release all its locks
• Check for deadlocks occasionally

CSE 444 - Spring 2016 24



5

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

25

None S X
None OK OK OK

S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:

CSE 444 - Spring 2016

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks

• Coarse grain locking (e.g., tables, predicate locks)
– Many false conflicts
– Less overhead in managing locks

• Alternative techniques
– Hierarchical locking (and intentional locks) [commercial DBMSs]
– Lock escalation CSE 444 - Spring 2016 26

Hierarchical Locking

• To enable both coarse- and fine-grained locking
• Consider database as a hierarchy

– Relations are largest lockable elements
– Relations consist of blocks
– Blocks contain tuples

• To place a lock on an element, start at the top
– If at element to lock, get an S or X lock on it
– If want to lock an element deeper in the hierarchy

• Leave an intentional lock: IS or IX

CSE 444 - Spring 2016 27

Hierarchical Locking

CSE 444 - Spring 2016 28From Franklin97. See readings posted on course website

Deadlocks
• Cycle in the wait-for graph:

– T1 waits for T2
– T2 waits for T3
– T3 waits for T1

• Deadlock detection
– Timeouts
– Wait-for graph

• Deadlock avoidance
– Acquire locks in pre-defined order
– Acquire all locks at once before starting

CSE 444 - Spring 2016 29

Lock Performance

CSE 444 - Spring 2016 30

Th
ro

ug
hp

ut

# Active Transactions

thrashing

Why ?



6

The Tree Protocol

• An alternative to 2PL, for tree structures
• E.g. B-trees (the indexes of choice in databases)

• Because
– Indexes are hot spots!
– 2PL would lead to great lock contention

CSE 444 - Spring 2016 31

The Tree Protocol
Rules:
• The first lock may be any node of the tree
• Subsequently, a lock on a node A may only be acquired if the 

transaction holds a lock on its parent B
• Nodes can be unlocked in any order (no 2PL necessary)
• “Crabbing”

– First lock parent then lock child
– Keep parent locked only if may need to update it
– Release lock on parent if child is not full

• The tree protocol is NOT 2PL, yet ensures conflict-serializ ab il ity!

CSE 444 - Spring 2016 32

Phantom Problem
• So far we have assumed the database to be a 

static collection of elements (=tuples)

• If tuples are inserted/deleted then the phantom 
problem appears

CSE 444 - Spring 2016 33

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Spring 2016 34

Phantom Problem

35

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Spring 2016

Phantom Problem

36

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Spring 2016This is conflict serializable ! What’s wrong ??



7

Phantom Problem

37

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Spring 2016Not serializable due to phantoms

Phantom Problem
• A “phantom” is a tuple that is 

invisible during part of a transaction execution but 
not invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSE 444 - Spring 2016 38

Phantom Problem

• In a static database:
– Conflict serializability implies serializability

• In a dynamic database, this may fail due to 
phantoms

• Strict 2PL guarantees conflict serializability, 
but not serializability

39CSE 444 - Spring 2016

Dealing With Phantoms

• Lock the entire table, or
• Lock the index entry for ‘blue’

– If index is available
• Or use predicate locks 

– A lock on an arbitrary predicate

Dealing with phantoms is expensive !

CSE 444 - Spring 2016 40

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 444 - Spring 2016 41

ACID

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

CSE 444 - Spring 2016 42

Possible pbs: dirty and inconsistent reads



8

2. Isolation Level: Read Committed 

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

CSE 444 - Spring 2016 43

Unrepeatable reads 
When reading same element twice, 
may get two different values

3. Isolation Level: Repeatable Read 

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

CSE 444 - Spring 2016 44

This is not serializable yet !!! Why ?

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Deals with phantoms too

CSE 444 - Spring 2016 45

READ-ONLY Transactions

CSE 444 - Spring 2016 46

Client 1: START TRANSACTION
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE  FROM Product
WHERE price <=0.99

COMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct
COMMIT

May improve
performance


