CSE 444:

Database Internals

Lectures 13
Transaction Schedules

CSE 444 - Sping 2016

Announcements

* Lab 2 extended until Monday

+ Lab 2 quiz moved to Wednesday

HWS5 extended to Friday

* 544M: Paper 3 due next Friday as well

CSE 444 - Sping 2016

Motiv

Client 1:

UPDATE Budget
SET money=money-100§
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40

WHERE pid = 3

ating Example

Client 2:
SELECT sum(money)
FROM Budget

|

Would like to treat
each group of
instructions as a unit

CSE 444 - Sping 2016

Transaction

Definition: a transaction is a sequence of updates to th
database with the property that either all complete,
or none completes (all-or-nothing).

May be omitted if

autocommit is off:

first SQL query
starts txn

START TRANSACTION
[SQL statements]

COMMIT or ROLLBACK (=ABOR

In ad-hoc SQL: each statement = one transaction
This is referred to as autocommit

CSE 444 - Sping 2016

Motivating Example

START TRANSACTION
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

DML {or BOLLZACK)

SELECT sum(money)
FROM Budget

N

With autocommit and

N

without START TRANSACTION,

each SQL command
is a transaction

J

CSE 444 - Sping 2016

ROLLBACK

+ Ifthe app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

» This causes the systemto “abort” the
transaction

— Database returns to a state without any of the
changes made by the transaction

+ Several reasons: user, application, system

CSE 444 - Sping 2016

Transactions

» Major component of database systems

« Critical for most applications; arguably more so
than SQL

» Turing awards to database researchers:
— Charles Bachman 1973
— Edgar Codd 1981 for inventing relational dbs
— Jim Gray 1998 for inventing transactions

— Mike Stonebraker 2015 for INGRES and Postgres
* And many other ideas after that
CSE 444 - Spiing 2016 7

ACID Properties

+ Atomicity: Either all changes performed by
transaction occur or none occurs

+ Consistency: A transaction as a whole does not
violate integrity constraints

- |Isolation: Transactions appear to execute one
after the other in sequence

+ Durability: If a transaction commits, its changes
will survive failures

CSE 444 - Sping 2016 8

What Could Go Wrong?

Why is it hard to provide ACID properties?

» Concurrent operations
— Isolation problems
— We saw one example earlier
 Failures can occur at any time
— Atomicity and durability problems
— Later lectures
» Transaction may need to abort

CSE 444 - Sping 2016 9

Terminology Needed For Lab 3
Buffer Manager Policies
+ STEAL or NO-STEAL

— Can an update made by an uncommitted transaction overwrite
the most recent committed value of a data item on disk?

* FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk before the
transaction commits?

+ Easiest for recovery: NO-STEAL/FORCE (lab 3)
» Highest performance: STEAL/NO-FORCE (lab 4)
* We will get back to this next week

CSE 444 - Spiing 2016 10

Transaction Isolation

CSE 444 - Sping 2016 1

Concurrent Execution Problems

» Write-read conflict: dirty read, inconsistent read
— Atransaction reads a value written by another transaction
that has not yet committed
* Read-write conflict: unrepeatable read
— Atransaction reads the value of the same object twice.

Another transaction modifies that value in between the
two reads

» Write-write conflict: lost update

— Two transactions update the value of the same object.
The second one to write the value overwrites the first
change

CSE 444 - Spiing 2016 12

Aand B are elements)
in the database
tand s are variables
in tx source code

Schedules Exampl

T1 T2
A schedule is a sequence READ(A, t) READ(A, s)
of interleaved actions U:=t+100 s:=572

WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t:=t+100 s:=s*2

WRITE(B,t) WRITE(B,s)

from all transactions

CSE 444 - Spiing 2016 13 CSE 444 - Spiing 2016 14
A Serial Schedule Serializable Schedule
T1 T2
READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(B, 1)
t:=t+100 N - FPE—
WRITE(B,t) A schedule is serializable if it is
E!E_Ag(zAvs) equivalent to a serial schedule
WRITE(As)
READ(B,s)
s:=s*2
WRITE(B,s)
A Serializable Schedule A Non-Serializable Schedule
T1 T2 T1 T2
READ(A, §) READ(A,)
t:= t+100 t:= t+100
WRITE(A, 1) WRITE(A, t)
READ(A,s) READ(As)
s:=s*2 s:=s*2
WRITE(A,s) WRITE(As)
READ(B,) READ(B,s)
t:=1t+100 s:=s*2
WRITE(B,1) WRITE(B,s)
READ(B,s) READ(B, t)
This is a serializable schedule.| s :=s*2 t:=t+100
This is NOT a serial schedule | WRITE(B,s) WRITE(B,t)

Serializable Schedules

* The role of the scheduler is to ensure that the
schedule is serializable

Q: Why not run only serial schedules ?
l.e. run one transaction after the other ?

CSE 444 - Sping 2016 19

Serializable Schedules

» The role of the scheduler is to ensure that the
schedule is serializable

Q: Why not run only serial schedules ?
l.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may schedule TXNs seriall

CSE 444 - Sping 2016 20

Still Serializable, but...

T1 T2
READ(A, 1)
t:=1t+100
WRITE(A, 1)
READ(As)
Schedule is serializable \SNE?I'E(%ASS)
because t=t+100 and READ(B,s)
s=s+200 commute s=s+ 200
WRITE(B,s)
READ(B, t)
t:=t+100
WRITE(BY)

...we don’t expect the scheduler to schedule thi{;

Ignoring Details

* Assume worst case updates:
— We never commute actions done by transactions

+ Therefore, we only care about reads and writes
— Transaction = sequence of R(A)’s and W(A)'s

Ty rq(A); wi(A); r1(B); wq(B)
To: ra(A), Wo(A); 12(B); wa(B)

CSE 444 - Sping 2016

N
R

Conflicts

* Write-Read — WR
* Read-Write — RW
* Write-Write — WW

CSE 444 - Sping 2016 23

Conflict Serializability

Conflicts:

Two actions by same transaction Ti; [ri(X); wi(Y)

Two writes by T;, T to same element wi(X); wi(X

|\

wi(X); ri(X)
ri(X); wi(X)

Read/write by T, Tj to same element

¥

CSE 444 - Sping 2016

Conflict Serializability

Definition A schedule is conflict serializabl
if it can be transformed into a serial
schedule by a series of swappings
of adjacent non-conflicting actions

» Every conflict-serializable scheduleis serializable
» The converse is not true in general

CSE 444 - Sping 2016 2

Conflict Serializability

Example:
[r1(A); wi(A); ra(A); wo(A); r1(B); wi(B); r2(B); wa(B)}

CSE 444 - Sping 2016

Conflict Serializability

Example:
[r1(A); wa(A); ro(A); wa(A); r1(B); wa(B); ra(B); wa(B)f
O

[r1(A); w1(A); T1(B); w1(B); T2(A); wa(A); T2(B); wa(B)}

CSE 444 - Sping 2016 27

Conflict Serializability

Example:
[r1(A); wi(A); r2(A);|wa(A); r1(B); wi(B); r2(B); wa(B)}
~

[r1(A); wi(A); T1(B); w1(B); T2(A); Wo(A); T2(B); wa(B)}

CSE 444 - Sping 2016

Conflict Serializability

Example:
[r1(A); wa(A); ra(A);|wa(A); r1(B)} wa(B); ra(B); wa(B)f
~~

——
|r1(A); w1(A);|r2(A); r1(B);|wz(A); w1(B); ra(B); wa(B)}

=

[r1(A); w1(A); T1(B); w1(B); To(A); wo(A); 12(B); wo(B)}

CSE 444 - Sping 2016 29

Conflict Serializability

Example:
[r1(A); wi(A); ra(A);[wa(A); r1(B)} wa(B); ra(B); wa(B)}
hd

| ——
[r1(A); w1(A);|r2(A); r1(|3)2|W2(A)? wi(B); r2(B); wa(B)}
e
[ri(A); wi(A); r1(B); ra(A); wo(A); wi(B); ro(B); wa(B)
R

[r1(A); wi(A); r1(B); wi(B); rz(A) wo(A); r(B); wo(B))

CSE 444 - Sping 2016

Testing for Conflict-Serializability

Precedence graph:
* Anode for each transaction T;

* Anedge fromT; to Ty whenever an actionin T,
conflicts with, and comes before an action in T;

» The schedule is serializable iff the precedence
graphis acyclic

CSE 444 - Sping 2016 31

Example 1

ra(A); 11(B); Wa(A); r3(A); W4(B); Wa(A); ra(B), wa(B)
—

O——0—2—0@

|This schedule is conflict-serializabl4

CSE 444 - Sping 2016 33

Example 1

ra(A); ri(B), walA), r3(A), w(B); wa(A); ra(B), wa(B)

o @ 06

CSE 444 - Sping 2016 2

Example 2

r(A); ri(B), Wa(A), ra(B); ra(A), wi(B); walA), wa(B)

o @ 06

CSE 444 - Sping 2016 %S

Example 2

ra(A); r(B), Wa(A), ra(B); ra(A); wi(B); ws(A), wa(B)

w

-0

|This schedule is NOT conflict-serializableia

CSE 444 - Sping 2016 35

View Equivalence

» A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

[w1(X); wa(X), WaY); wi(Y); wa(Y); |

|Is this schedule conflict-serializable 1

CSE 444 -Spiing 2016 36

View Equivalence

» Aserializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

|W1(X); W (X); Wo(Y); wy(Y); W3(Y);I

IIs this schedule conflict-serializable ’t

CSE 444 -Spriing 2016 a7

View Equivalence

» A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

w4 (X); Wa(X), wo(Y); wq(Y); W3(Y);I
Lost write /‘FL/

[w1(X); w1(Y); Wa(X); wa(Y); wa(Y);)

IEquivaIent, but not conflict—equivalenl »

View Equivalence

T T2 T3 T T2 T3
WA(X) W1(X)

W2(X) W1(Y)

W2(Y) Cco1

€02 |:> W2(X)
WA1(Y) W2(Y)
CO1 co2

W3(Y) W3(Y)
CO3 co3

ISeriaIizabIe, but not conflict serializablése

View Equivalence
Two schedules S, S’ are view equivalent if:
« If Treads an initial value of Ain S,
then T reads the initial value of Ain S’

* |If Treads a value of A writtenby T in S,
then T reads a value of A writtenby T'in S’

e |f Twrites the final value of Ain S,
then T writes the final value of Ain S’

CSE 444 -Spiing 2016 40

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:

» Ifascheduleis conflict serializable,
thenit is also view serializable

* Butnotviceversa

CSE 444-Spiing 2016 M

Schedules with Aborted Transactions

* When atransaction aborts, the recovery
manager undoes its updates

+ But some of its updates may have affected
other transactions !

CSE 444 -Spiing 2016 42

Schedules with Aborted Transactions

T1 T2
R(A)
W(A)
R(A)
W(R)
R(B)
W(B)
Commit
Abort
CSE 444 - Spiing 2016 43

Schedules with Aborted Transactions

T1 T2
R(A)
W(A)
R(A)
WR)
R(B)
W(B)
Commit
Abort

|Cannot abort T1 because cannot undo T21

Recoverable Schedules

A schedule is recoverable if:

* Itis conflict-serializable, and

* Whenever a transaction T commits, all
transactions who have written elements read
by T have already committed

CSE 444-Spiing 2016 45

Recoverable Schedules

T1 T2 T1 T2

R(A) R(A)

W(A) W(A)
R(A) R(A)
W(A) W(A)
R(B) R(B)
W(B) W(B)
Commit Commit

? Commit

Recoverable Schedules

T1 T2 T3 T4
R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)
R(C)
W(C)
R(C)
W(C)
R(D)
W(D)
Abort

47

How do we recover ?

Cascading Aborts

« |f atransaction T aborts, then we need to
abort any other transaction T that has read
an element writtenby T

» Aschedule avoids cascading aborts if
whenever a transaction reads an element, the
transaction that has last written it has already
committed.

CSE 444 -Spiing 2016 48

Avoiding Cascading Aborts
T1 T2 T1 T2
R(A) R(A)
W(A) W(A)
R(A) Commit
W(A) R(A)
R(B) W(A)
W(B) R(B)
W(B)

With cascading aborts| |Without cascading aborts

CSE 444-Spiing 2016 49

Serializability

« Serial

« Serializable
* Conflict serializable

Review of Schedules

Recoverability

* Recoverable
» Avoids cascading

- View serializable deletes

CSE 444 -Spiing 2016 50

Scheduler

* The scheduler:

Module that schedules the transaction’s actions,
ensuring serializability

» Two main approaches
* Pessimistic: locks
Optimistic: timestamps, multi-version, validation

CSE 444-Spiing 2016 51

