
CSE 444: Database Internals

Lecture 12
Query Optimization (part 3)

1CSE 444 - Spring 2016

Reminders

 I'm not Magda

 Lab 2 is due on Friday by 11pm

 Lab 3 released this Friday (transactions, yay!)

 HW 5 due next week

 Quiz on 4/25 (next Monday)

CSE 444 - Spring 2016 2

Acknowledgments

Today’s lecture focuses on how to actually
implement the Selinger optimizer

(Many slides from Sam Madden at MIT)

CSE 444 - Spring 2016 3

Selinger Optimizer

Goal:
 How to order a series joins over N tables A,B,C,…
E.g. A.a = B.b AND A.c = D.d AND B.e = C.f

4CSE 444 - Spring 2016

Selinger Optimizer

Problem:
 … too … many … plans …

5CSE 444 - Spring 2016

Goal:
 How to order a series joins over N tables A,B,C,…
E.g. A.a = B.b AND A.c = D.d AND B.e = C.f

Selinger Optimizer

Problem:
 N! ways to order joins; e.g. ABCD, ACBD, ….

 plans/ordering; e.g. (((AB)C)D), ((AB)(CD)))

 Multiple implementations (hash, nested loops)

 Naïve approach does not scale
 E.g. N = 20, #join orders 20! = 2.4 x 1018 ; many more plans

6CSE 444 - Spring 2016

Goal:
 How to order a series joins over N tables A,B,C,…
E.g. A.a = B.b AND A.c = D.d AND B.e = C.f

Selinger Optimizer

 Only left-deep plans: (((AB)C)D) – eliminate CN-1.

 Push down selections

 Don’t consider Cartesian products

 Dynamic programming algorithm

7CSE 444 - Spring 2016

Dynamic Programming
OrderJoins:
R = set of relations to join
For d = 1 to |R|:
 For S in {all size-d subsets of R}:
 Pick a S with lowest cost (S-a) a∈ ⋈

CSE 444 - Spring 2016 8

Dynamic Programming
OrderJoins:
R = set of relations to join
For d = 1 to |R|:
 For S in {all size-d subsets of R}:
 Pick a S with lowest cost (S-a) a∈ ⋈

CSE 444 - Spring 2016 9

 ↑
What is the cost?
 * Cost to scan a
 * Cost to produce S-a
 * Cost to join (S-a) with a

Dynamic Programming
OrderJoins:
R = set of relations to join
For d = 1 to |R|:
 For S in {all size-d subsets of R}:
 Pick a S with lowest cost (S-a) a∈ ⋈

CSE 444 - Spring 2016 10

 ↑
What is the cost?
 * Cost to scan a
 * Cost to produce S-a ← Calculated in previous iteration

 * Cost to join (S-a) with a

Dynamic Programming
OrderJoins:
R = set of relations to join
For d = 1 to |R|:
 For S in {all size-d subsets of R}:
 optjoin(S) = (S – a) join a,
 where a is the single relation that minimizes:
 cost(optjoin(S – a)) +
 min.cost to join (S – a) with a +
 min.access cost for a

Note: optjoin(S-a) is cached from previous iterations

CSE 444 - Spring 2016 11

Example

 orderJoins(A, B, C, D)
 Assume all joins are NL

12

Subplan S optJoin(S) Cost(OptJoin(S))

A

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)
 Assume all joins are NL

 d = 1
 A = best way to access A

 (sequential scan, predicate-pushdown on index, etc)
 B = best way to access B
 C = best way to access C
 D = best way to access D

 Total number of steps: choose(N, 1)

13

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

C Seq scan 120

D B+tree
scan

400

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B

14

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B

15

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B
 {B,C} = BC or CB

16

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

{B, C} BC 98

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B
 {B,C} = BC or CB

17

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

{B, C} BC 98

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B
 {B,C} = BC or CB
 {C,D} = CD or DC
 {A,C} = AC or CA
 {B,D} = BD or DB
 {A,D} = AD or DA

18

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

{B, C} BC 98

……..

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B
 {B,C} = BC or CB
 {C,D} = CD or DC
 {A,C} = AC or CA
 {B,D} = BD or DB
 {A,D} = AD or DA

 Total number of steps: choose(N, 2) × 2

19

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

{B, C} BC 98

……..

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 3

{A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A

20

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 3

{A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A

21

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

optJoin(B,C)
and its cost are
already cached
in table

optJoin(B,C)
and its cost are
already cached
in table

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 3

{A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B

 Remove C: compare C({A,B}) to ({A,B})C

22

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B,C)
and its cost are
already cached
in table

optJoin(B,C)
and its cost are
already cached
in table

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 3

{A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B

 Remove C: compare C({A,B}) to ({A,B})C

23

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B,C)
and its cost are
already cached
in table

optJoin(B,C)
and its cost are
already cached
in table

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 3

{A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B

 Remove C: compare C({A,B}) to ({A,B})C
 {A,B,D} =
 Remove A: compare A({B,D}) to ({B,D})A
 …
 {A,C,D} =…
 {B,C,D} =…

 Total number of steps: choose(N, 3) × 3 × 2
24

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B,C)
and its cost are
already cached
in table

optJoin(B,C)
and its cost are
already cached
in table

Example

 orderJoins(A, B, C, D)

 d = 4
 {A,B,C,D} =

 Remove A: compare A({B,C,D}) to ({B,C,D})A
 Remove B: compare B({A,C,D}) to ({A,C,D})B
 Remove C: compare C({A,B,D}) to ({A,B,D})C

 Remove D: compare D({A,B,C}) to ({A,B,C})D

 Total number of steps: choose(N, 4) × 4 × 2

25

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50

{A, B} BA 156

{B, C} BC 98

{A, B, C} BAC 500

{B, C, D} DBC 150

……..

optJoin(B, C, D)
and its cost are
already cached
in table

optJoin(B, C, D)
and its cost are
already cached
in table

CSE 444 - Spring 2016

Complexity

 Total #subsets considered
 Choose(N, 1) + Choose(N, 2) + ….. + Choose (N, N)
 All nonempty subsets of a size N set: 2N – 1
 Equivalently: number of binary strings of size N, except 00…0:
 000, 001, 010, 011, 100, 101, 110, 111

26CSE 444 - Spring 2016

Complexity

 Total #subsets considered
 Choose(N, 1) + Choose(N, 2) + ….. + Choose (N, N)
 All nonempty subsets of a size N set: 2N – 1
 Equivalently: number of binary strings of size N, except 00…0:
 000, 001, 010, 011, 100, 101, 110, 111

 For each subset of size d:
 d ways to remove one element
 2 ways for compute AB or BA

27CSE 444 - Spring 2016

Complexity

 Total #subsets considered
 Choose(N, 1) + Choose(N, 2) + ….. + Choose (N, N)
 All nonempty subsets of a size N set: 2N – 1
 Equivalently: number of binary strings of size N, except 00…0:
 000, 001, 010, 011, 100, 101, 110, 111

 For each subset of size d:
 d ways to remove one element
 2 ways for compute AB or BA

 Total #plans considered
 Choose(N, 1) + 2 Choose(N, 2) + ….. + N Choose (N, N)
 Equivalently: total number of 1’s in all strings of size N
 N 2N-1 because every 1 occurs 2N-1 times
 Need to further multiply by 2, to account for AB or BA

28CSE 444 - Spring 2016

Why Left-Deep
Asymmetric, cost depends on the order
 Left: Outer relation Right: Inner relation

 For nested-loop-join, we try to load the outer
(typically smaller) relation in memory, then read
the inner relation one page at a time

 B(R) + B(R)*B(S) or B(R) + B(R)/M * B(S)

 For index-join,
 we assume right (inner) relation has index

29CSE 444 - Spring 2016

Why Left-Deep
 Advantages of left-deep trees?

1. Fits well with standard join algorithms (nested loop, one-pass),
more efficient

2. One pass join: Uses smaller memory
1. ((R, S), T), can reuse the space for R while joining (R, S) with T
2. (R, (S, T)): Need to hold R, compute (S, T), then join with R,

worse if more relations

3. Nested loop join, consider top-down iterator next()
1. ((R, S), T), Reads the chunks of (R, S) once, reads stored base

relation T multiple times
2. (R, (S, T)): Reads the chunks of R once, reads computed relation

(S, T) multiple times, either more time or more space

30CSE 444 - Spring 2016

Excruciatingly Detailed
Optimization Example

31CSE 444 - Spring 2016

Interesting Orders

 Some query plans produce data in sorted order
 E.g scan over a primary index, merge-join
 Called interesting order

 Next operator may use this order
 E.g. can be another merge-join

 For each subset of relations, compute multiple optimal
plans, one for each interesting order

 Increases complexity by factor k+1, where k=number of
interesting orders

CSE 444 - Spring 2016 32

