
CSE 444: Database Internals

Lecture 12
Query Optimization (part 3)

1CSE 444 - Spring 2016

Reminders

 I'm not Magda

 Lab 2 is due on Friday by 11pm

 Lab 3 released this Friday (transactions, yay!)

 HW 5 due next week

 Quiz on 4/25 (next Monday)

CSE 444 - Spring 2016 2

Acknowledgments

Today’s lecture focuses on how to actually
implement the Selinger optimizer

(Many slides from Sam Madden at MIT)

CSE 444 - Spring 2016 3

Selinger Optimizer

Goal:
 How to order a series joins over N tables A,B,C,…
E.g. A.a = B.b AND A.c = D.d AND B.e = C.f

4CSE 444 - Spring 2016

Selinger Optimizer

Problem:
 … too … many … plans …

5CSE 444 - Spring 2016

Goal:
 How to order a series joins over N tables A,B,C,…
E.g. A.a = B.b AND A.c = D.d AND B.e = C.f

Selinger Optimizer

Problem:
 N! ways to order joins; e.g. ABCD, ACBD, ….

 plans/ordering; e.g. (((AB)C)D), ((AB)(CD)))

 Multiple implementations (hash, nested loops)

 Naïve approach does not scale
 E.g. N = 20, #join orders 20! = 2.4 x 1018 ; many more plans

6CSE 444 - Spring 2016

Goal:
 How to order a series joins over N tables A,B,C,…
E.g. A.a = B.b AND A.c = D.d AND B.e = C.f

Selinger Optimizer

 Only left-deep plans: (((AB)C)D) – eliminate CN-1.

 Push down selections

 Don’t consider Cartesian products

 Dynamic programming algorithm

7CSE 444 - Spring 2016

Dynamic Programming
OrderJoins:
R = set of relations to join
For d = 1 to |R|:
 For S in {all size-d subsets of R}:
 Pick a S with lowest cost (S-a) a∈ ⋈

CSE 444 - Spring 2016 8

Dynamic Programming
OrderJoins:
R = set of relations to join
For d = 1 to |R|:
 For S in {all size-d subsets of R}:
 Pick a S with lowest cost (S-a) a∈ ⋈

CSE 444 - Spring 2016 9

 ↑
What is the cost?
 * Cost to scan a
 * Cost to produce S-a
 * Cost to join (S-a) with a

Dynamic Programming
OrderJoins:
R = set of relations to join
For d = 1 to |R|:
 For S in {all size-d subsets of R}:
 Pick a S with lowest cost (S-a) a∈ ⋈

CSE 444 - Spring 2016 10

 ↑
What is the cost?
 * Cost to scan a
 * Cost to produce S-a ← Calculated in previous iteration

 * Cost to join (S-a) with a

Dynamic Programming
OrderJoins:
R = set of relations to join
For d = 1 to |R|:
 For S in {all size-d subsets of R}:
 optjoin(S) = (S – a) join a,
 where a is the single relation that minimizes:
 cost(optjoin(S – a)) +
 min.cost to join (S – a) with a +
 min.access cost for a

Note: optjoin(S-a) is cached from previous iterations

CSE 444 - Spring 2016 11

Example

 orderJoins(A, B, C, D)
 Assume all joins are NL

12

Subplan S optJoin(S) Cost(OptJoin(S))

A

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)
 Assume all joins are NL

 d = 1
 A = best way to access A

 (sequential scan, predicate-pushdown on index, etc)
 B = best way to access B
 C = best way to access C
 D = best way to access D

 Total number of steps: choose(N, 1)

13

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

C Seq scan 120

D B+tree
scan

400

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B

14

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B

15

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B
 {B,C} = BC or CB

16

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

{B, C} BC 98

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B
 {B,C} = BC or CB

17

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

{B, C} BC 98

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B
 {B,C} = BC or CB
 {C,D} = CD or DC
 {A,C} = AC or CA
 {B,D} = BD or DB
 {A,D} = AD or DA

18

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

{B, C} BC 98

……..

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 2
 {A,B} = AB or BA
 use previously computed

 best way to access A and B
 {B,C} = BC or CB
 {C,D} = CD or DC
 {A,C} = AC or CA
 {B,D} = BD or DB
 {A,D} = AD or DA

 Total number of steps: choose(N, 2) × 2

19

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

{B, C} BC 98

……..

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 3

{A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A

20

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 3

{A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A

21

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

optJoin(B,C)
and its cost are
already cached
in table

optJoin(B,C)
and its cost are
already cached
in table

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 3

{A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B

 Remove C: compare C({A,B}) to ({A,B})C

22

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B,C)
and its cost are
already cached
in table

optJoin(B,C)
and its cost are
already cached
in table

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 3

{A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B

 Remove C: compare C({A,B}) to ({A,B})C

23

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B,C)
and its cost are
already cached
in table

optJoin(B,C)
and its cost are
already cached
in table

CSE 444 - Spring 2016

Example

 orderJoins(A, B, C, D)

 d = 3

{A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B

 Remove C: compare C({A,B}) to ({A,B})C
 {A,B,D} =
 Remove A: compare A({B,D}) to ({B,D})A
 …
 {A,C,D} =…
 {B,C,D} =…

 Total number of steps: choose(N, 3) × 3 × 2
24

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B,C)
and its cost are
already cached
in table

optJoin(B,C)
and its cost are
already cached
in table

Example

 orderJoins(A, B, C, D)

 d = 4
 {A,B,C,D} =

 Remove A: compare A({B,C,D}) to ({B,C,D})A
 Remove B: compare B({A,C,D}) to ({A,C,D})B
 Remove C: compare C({A,B,D}) to ({A,B,D})C

 Remove D: compare D({A,B,C}) to ({A,B,C})D

 Total number of steps: choose(N, 4) × 4 × 2

25

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50

{A, B} BA 156

{B, C} BC 98

{A, B, C} BAC 500

{B, C, D} DBC 150

……..

optJoin(B, C, D)
and its cost are
already cached
in table

optJoin(B, C, D)
and its cost are
already cached
in table

CSE 444 - Spring 2016

Complexity

 Total #subsets considered
 Choose(N, 1) + Choose(N, 2) + ….. + Choose (N, N)
 All nonempty subsets of a size N set: 2N – 1
 Equivalently: number of binary strings of size N, except 00…0:
 000, 001, 010, 011, 100, 101, 110, 111

26CSE 444 - Spring 2016

Complexity

 Total #subsets considered
 Choose(N, 1) + Choose(N, 2) + ….. + Choose (N, N)
 All nonempty subsets of a size N set: 2N – 1
 Equivalently: number of binary strings of size N, except 00…0:
 000, 001, 010, 011, 100, 101, 110, 111

 For each subset of size d:
 d ways to remove one element
 2 ways for compute AB or BA

27CSE 444 - Spring 2016

Complexity

 Total #subsets considered
 Choose(N, 1) + Choose(N, 2) + ….. + Choose (N, N)
 All nonempty subsets of a size N set: 2N – 1
 Equivalently: number of binary strings of size N, except 00…0:
 000, 001, 010, 011, 100, 101, 110, 111

 For each subset of size d:
 d ways to remove one element
 2 ways for compute AB or BA

 Total #plans considered
 Choose(N, 1) + 2 Choose(N, 2) + ….. + N Choose (N, N)
 Equivalently: total number of 1’s in all strings of size N
 N 2N-1 because every 1 occurs 2N-1 times
 Need to further multiply by 2, to account for AB or BA

28CSE 444 - Spring 2016

Why Left-Deep
Asymmetric, cost depends on the order
 Left: Outer relation Right: Inner relation

 For nested-loop-join, we try to load the outer
(typically smaller) relation in memory, then read
the inner relation one page at a time

 B(R) + B(R)*B(S) or B(R) + B(R)/M * B(S)

 For index-join,
 we assume right (inner) relation has index

29CSE 444 - Spring 2016

Why Left-Deep
 Advantages of left-deep trees?

1. Fits well with standard join algorithms (nested loop, one-pass),
more efficient

2. One pass join: Uses smaller memory
1. ((R, S), T), can reuse the space for R while joining (R, S) with T
2. (R, (S, T)): Need to hold R, compute (S, T), then join with R,

worse if more relations

3. Nested loop join, consider top-down iterator next()
1. ((R, S), T), Reads the chunks of (R, S) once, reads stored base

relation T multiple times
2. (R, (S, T)): Reads the chunks of R once, reads computed relation

(S, T) multiple times, either more time or more space

30CSE 444 - Spring 2016

Excruciatingly Detailed
Optimization Example

31CSE 444 - Spring 2016

Interesting Orders

 Some query plans produce data in sorted order
 E.g scan over a primary index, merge-join
 Called interesting order

 Next operator may use this order
 E.g. can be another merge-join

 For each subset of relations, compute multiple optimal
plans, one for each interesting order

 Increases complexity by factor k+1, where k=number of
interesting orders

CSE 444 - Spring 2016 32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

