CSE 444: Database Internals

Lecture 10

Query Optimization (part 1)

Reminders

Lab 2 Part 1 due tonight, 11:00pm

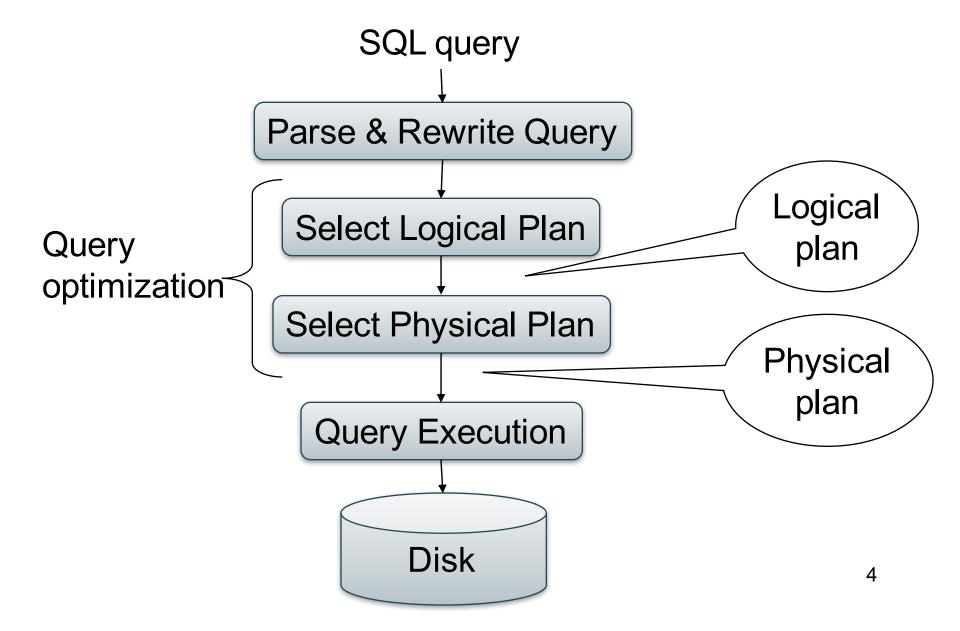
Homework 2 due on Monday, 11:00pm

Know how to compute the cost of a plan

Next: Find a good plan automatically?

This is the role of the query optimizer

Query Optimization Overview



What We Already Know...

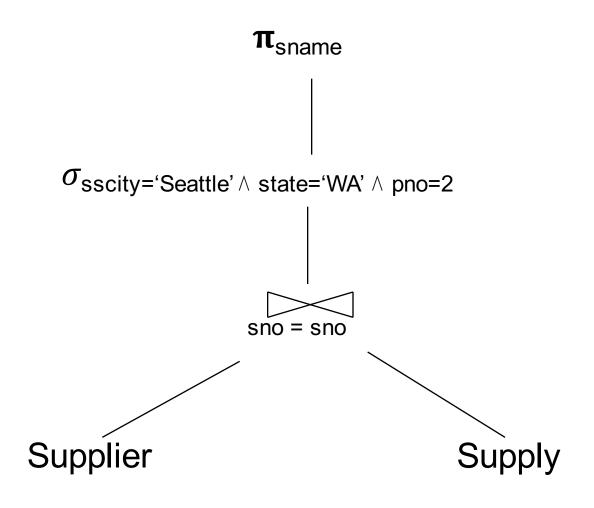
```
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)
```

For each SQL query....

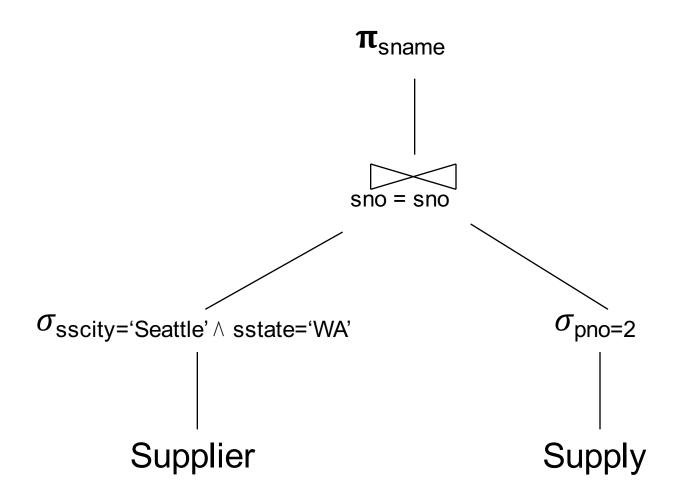
```
SELECT S.sname
FROM Supplier S, Supply U
WHERE S.scity='Seattle' AND S.sstate='WA'
AND S.sno = U.sno
AND U.pno = 2
```

There exist many logical query plan...

Example Query: Logical Plan 1



Example Query: Logical Plan 2

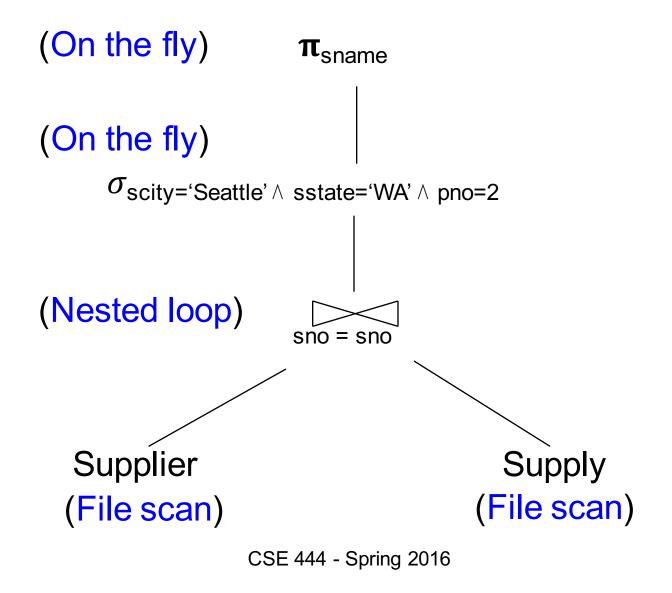


What We Also Know

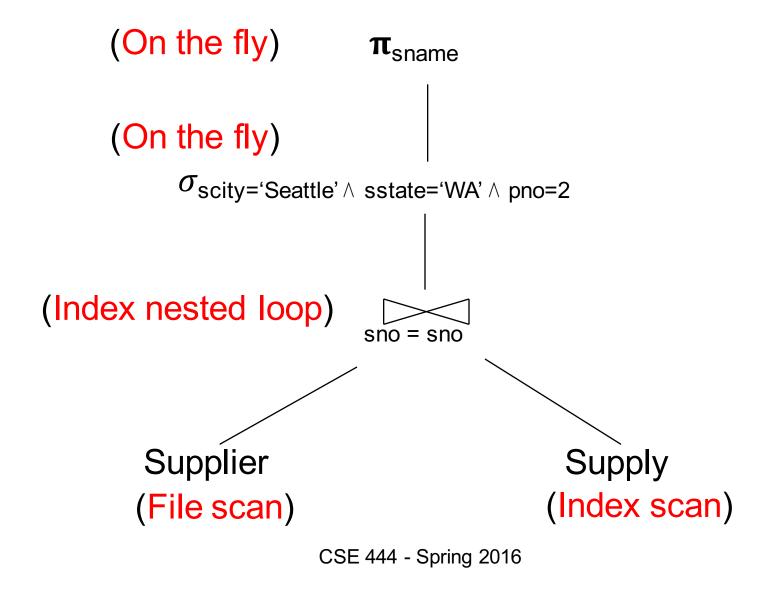
For each logical plan...

There exist many physical plans

Example Query: Physical Plan 1



Example Query: Physical Plan 2



Query Optimizer Overview

- Input: A logical query plan
- Output: A good physical query plan
- Basic query optimization algorithm
 - Enumerate alternative plans (logical and physical)
 - Compute estimated cost of each plan
 - Compute number of I/Os
 - Optionally take into account other resources
 - Choose plan with lowest cost
 - This is called cost-based optimization

Lessons

- No magic "best" plan: depends on the data
- In order to make the right choice
 - Need to have statistics over the data
 - The B's, the T's, the V's
 - Commonly (and in SimpleDB): histograms over base data

Outline

Search space

Algorithm for enumerating query plans

Relational Algebra Equivalences

Selections

- Commutative: $\sigma_{c1}(\sigma_{c2}(R))$ same as $\sigma_{c2}(\sigma_{c1}(R))$
- Cascading: $\sigma_{c1 \land c2}(R)$ same as $\sigma_{c2}(\sigma_{c1}(R))$

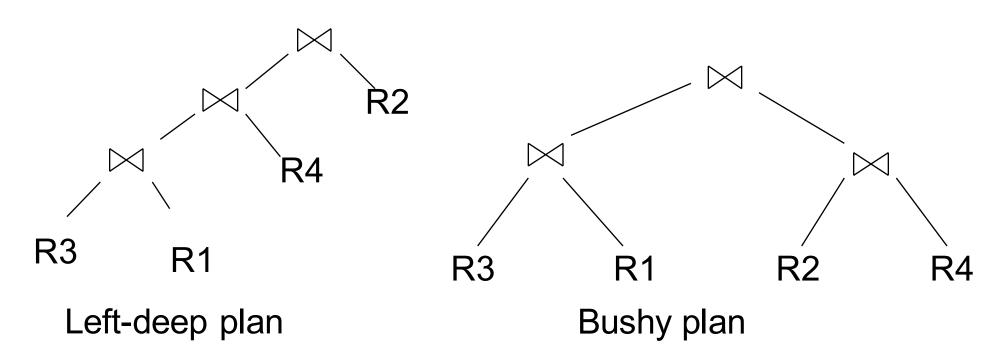
Projections

Cascading

Joins

- Commutative : R ⋈ S same as S ⋈ R
- Associative: $R \bowtie (S \bowtie T)$ same as $(R \bowtie S) \bowtie T$

Left-Deep Plans, Bushy Plans, and Linear Plans



Linear plan: One input to each join is a relation from disk Can be either left or right input

Commutativity, Associativity, Distributivity

$$R \cup S = S \cup R$$
, $R \cup (S \cup T) = (R \cup S) \cup T$
 $R \bowtie S = S \bowtie R$, $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$

$$R\bowtie (S\cup T) = (R\bowtie S)\cup (R\bowtie T)$$

Laws Involving Selection

$$\sigma_{CANDC'}(R) = \sigma_{C}(\sigma_{C'}(R)) = \sigma_{C}(R) \cap \sigma_{C'}(R)$$
 $\sigma_{CORC'}(R) = \sigma_{C}(R) \cup \sigma_{C'}(R)$
 $\sigma_{C}(R \bowtie S) = \sigma_{C}(R) \bowtie S$

$$\sigma_{c}(R - S) = \sigma_{c}(R) - S$$

 $\sigma_{c}(R \cup S) = \sigma_{c}(R) \cup \sigma_{c}(S)$
 $\sigma_{c}(R \bowtie S) = \sigma_{c}(R) \bowtie S$

Assuming C on attributes of R

Example: Simple Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G)

$$\sigma_{F=3}(R\bowtie_{D=E}S)=$$

$$\sigma_{A=5 \text{ AND } G=9} (R \bowtie_{D=E} S) = G$$

Example: Simple Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G)

$$\sigma_{F=3}(R\bowtie_{D=E}S)=R\bowtie_{D=E}\sigma_{F=3}(S)$$

$$\sigma_{A=5 \text{ AND G}=9} (R \bowtie_{D=E} S) = \sigma_{A=5} (R) \bowtie_{D=E} \sigma_{G=9} (S)$$

Laws Involving Projections

$$\Pi_{M}(R \bowtie S) = \Pi_{M}(\Pi_{P}(R) \bowtie \Pi_{Q}(S))$$

$$\Pi_{M}(\Pi_{N}(R)) = \Pi_{M}(R)$$
/* note that $M \subseteq N$ */

• Example R(A,B,C,D), S(E, F, G) $\Pi_{A,B,G}(R\bowtie_{D=E}S) = \Pi_{?}(\Pi_{?}(R)\bowtie_{D=E}\Pi_{?}(S))$

Laws Involving Projections

$$\Pi_{M}(R \bowtie S) = \Pi_{M}(\Pi_{P}(R) \bowtie \Pi_{Q}(S))$$

$$\Pi_{M}(\Pi_{N}(R)) = \Pi_{M}(R)$$
/* note that $M \subseteq N$ */

• Example R(A,B,C,D), S(E, F, G)

$$\Pi_{A,B,G}(R \bowtie_{D=E} S) = \Pi_{A,B,G} (\Pi_{A,B,D}(R) \bowtie_{D=E} \Pi_{E,G}(S))$$

Laws involving grouping and aggregation

$$\gamma_{A, \text{ agg}(D)}(R(A,B) \bowtie_{B=C} S(C,D)) =$$

 $\gamma_{A, \text{ agg}(D)}(R(A,B) \bowtie_{B=C} (\gamma_{C, \text{ agg}(D)} S(C,D)))$

Laws involving grouping and aggregation

$$\delta(\gamma_{A, \text{agg}(B)}(R)) = \gamma_{A, \text{agg}(B)}(R)$$

$$\gamma_{A, \text{ agg(B)}}(\delta(R)) = \gamma_{A, \text{ agg(B)}}(R)$$
if agg is "duplicate insensitive"

Which of the following are "duplicate insensitive"? sum, count, avg, min, max

Laws Involving Constraints

Foreign key

Product(<u>pid</u>, pname, price, cid) Company(<u>cid</u>, cname, city, state)

 $\Pi_{\text{pid, price}}(\text{Product} \bowtie_{\text{cid=cid}} \text{Company}) = \Pi_{\text{pid, price}}(\text{Product})$

Search Space Challenges

- Search space is huge!
 - Many possible equivalent trees
 - Many implementations for each operator
 - Many access paths for each relation
 - File scan or index + matching selection condition
- Cannot consider ALL plans
 - Heuristics: only partial plans with "low" cost

Outline

Search space

Algorithm for enumerating query plans

Key Decisions

Logical plan

- What logical plans do we consider (left-deep, bushy?); Search Space
- Which algebraic laws do we apply, and in which context(s)?; Optimization rules
- In what order do we explore the search space?;
 Optimization algorithm

Key Decisions

Physical plan

What physical operators to use?

What access paths to use (file scan or index)?

Pipeline or materialize intermediate results?

These decisions also affect the search space

Two Types of Optimizers

- Heuristic-based optimizers:
 - Apply greedily rules that always improve plan
 - Typically: push selections down
 - Very limited: no longer used today
- Cost-based optimizers:
 - Use a cost model to estimate the cost of each plan
 - Select the "cheapest" plan
 - We focus on cost-based optimizers

Three Approaches to Search Space Enumeration

Complete plans

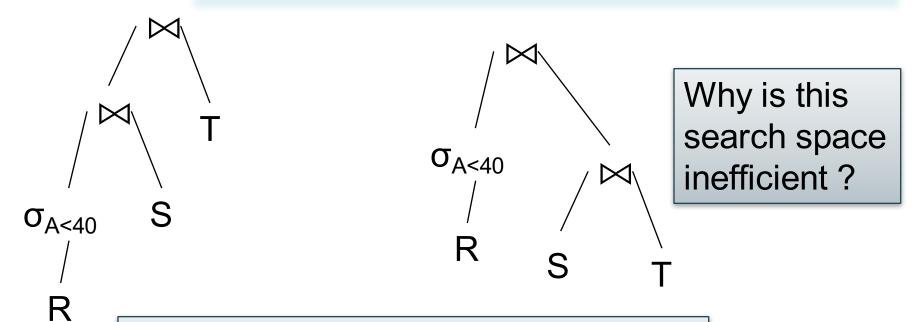
Bottom-up plans

Top-down plans

Complete Plans

R(A,B)
S(B,C)
T(C,D)

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40



Answer: No way to do early pruning

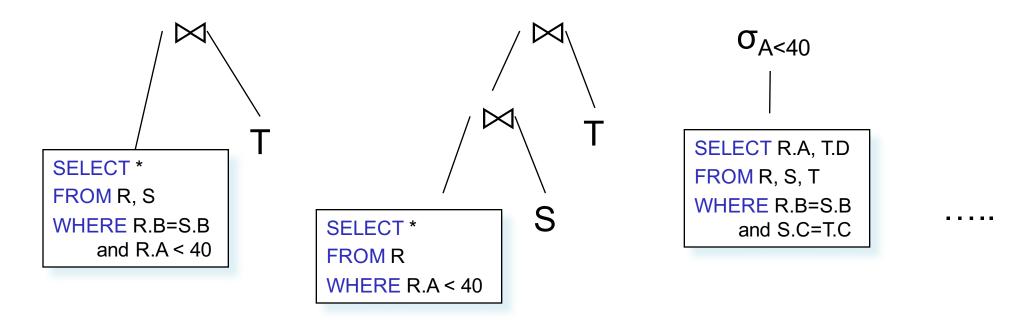
Bottom-up Partial Plans

R(A,B)**SELECT*** S(B,C)FROM R, S, T T(C,D)WHERE R.B=S.B and S.C=T.C and R.A<40 Why is this better? $\sigma_{A<40}$ $\sigma_{A<40}$ $\sigma_{A<40}$ 32 We will prune bad plans for sub-expressions

Top-down Partial Plans

R(A,B)S(B,C)T(C,D)

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40



Two Types of Plan Enumeration Algorithms

- Dynamic programming (in class)
 - Based on System R (aka Selinger) style optimizer[1979]
 - Limited to joins: join reordering algorithm
 - Bottom-up
- Rule-based algorithm (will not discuss)
 - Database of rules (=algebraic laws)
 - Usually: dynamic programming
 - Usually: top-down