CSE 444: Database Internals

Lectures 5-6
Indexing

CSE 444 - Sping 2016 1

Announcements
» Tuesday office hours: 10:30am or 5pm?

* HW1 due tonight by 11pm

— Turnin an electronic copy (word/pdf) by 11pm, or
— Turnin ahard copy after class

* Lab1is due Friday, 11pm
— Do not fall behind on the labs!
— Labs build on each other

CSE 444 - Sping 2016 2

Basic Access Method: Heap File

AP

» Create or destroy afile

* Insertarecord

» Delete a record with a given rid (rid)
— rid: unique tuple identifier (more later)

* Get a record with a given rid

— Not necessary for sequential scan operator
— But used with indexes
» Scan all records in the file

CSE 444 - Sping 2016 3

But Often Also Want....

» Scan all records in the file that match a
predicate of the form attribute op value

— Example: Find all students with GPA > 3.5

+ Critical to support such requests efficiently

— Why read all data form disk when we only need a
small fraction of that data?

» This lecture and next, we will learn how

CSE 444 - Sping 2016 4

Searching in a Heap File

File is not sorted on any attribute
Student (sid: int, age: int, ..)

0 1record

}_1 page

21

CSE 444 - Spiing 2016 5

Heap File Search Example

» 10,000 students

» 10 student records per page

Total number of pages: 1,000 pages
Find student whose sid is 80

— Must read on average 500 pages

Find all students older than 20

— Must read all 1,000 pages

» Can we do better?

CSE 444 - Spiing 2016 6

Sequential File

File sorted on an attribute, usually on primary key
Student (sid: int, age: int, ..)

o

CSE 444 - Sping 2016 7

Sequential File Example

Total number of pages: 1,000 pages

Find student whose sid is 80

— Could do binary search, read log,(1,000) = 10 pages
Find all students older than 20

— Must still read all 1,000 pages

Can we do even better?

Note: Sorted files are inefficient for inserts/deletes

CSE 444 - Sping 2016 8

Outline

* Hash-based indexes
« B+ trees } Next time

o |
ndex structures } Today

CSE 444 - Sping 2016 9

Indexes

Index: data structure that organizes data records on disk to
optimize selections on the search key fields for the index

An index contains a collection of data entries, and supports
efficient retrieval of all data entries with a given search key value k

Indexes are also access methods!
— So they provide the same API| as we have seen for Heap Files
— And efficiently supportscans over tuples matching predicate on search key

CSE 444 - Sping 2016 10

Indexes

Search key = can be any set of fields
— not the same as the primary key, nor a key
Index = collection of data entries

Data entry for key k can be:

— The actual record with key k
» Inthis case, the index is also a special file organization
+ Called: “indexed file organization”

- (k, RID)

— (k, list-of-RIDs)

CSE 444 - Spiing 2016 11

» For the data inside base relations:

* Then we can have additional index files that

* Index can also be a “covering index”

Different Types of Files

— Heap file (tuples stored without any order)
— Sequential file (tuples sorted some attribute(s))
— Indexed file (tuples organized following an index)

store (key,rid) pairs

— Index contains (search key + other attributes, rid)

— Index suffices to answer some queries
CSE 444 - Spiing 2016 12

Primary Index

* Primary index determines location of indexed records|
» Dense index: sequence of (key,rid) pairs

Index File Data File (Sequentialfile)
——

1 da eniy I O

20

30

L

a0

B
; & —

page 70
w0

%

CSE 444 - Sping 2016 13

yari

Primary Index

» Sparseindex

0
30
50

70 N

/

I

50
110

130

150

II

CSE 444 - Sping 2016 14

Primary Index
with Duplicate Keys

+ Sparse index: pointer to lowest search key on

each page: Example search for 20 out
nee
search

™ R U
o] N
20is 2
|her;___i RN o 1]
EN

CSE 444 - Sping 2016 15

Primary Index
with Duplicate Keys

* Dense index:

CSE 444 - Spiing 2016 17

Primary Index
with Duplicate Keys

» Better: pointer to lowest new search key on

each page:
=
(ol

10

LUAN

20

20is ® | =
here... hil

search

= o T 1 (tombere
®
- o]

o]
%

40

e Searchfor15? 35?7 [,

CSE 444 - Sping 2016 16

Primary Index: Back to Example
+ Let’s assume all pages of index fit in memory

» Find student whose sid is 80
— Index (dense or sparse) points directly to the page
— Only need to read 1 page from disk.

 Find all students older than 20
— Must still read all 1,000 pages.

* How can we make both queries fast?

CSE 444 - Spiing 2016 18

Secondary Indexes

+ To index other attributes than primary key
» Always dense (why ?)

I 10 |21

18 20 |20
19

9

\\p dr)d

20

21

21

\[/

22

CSE 444 - Sping 2016 19

6 .
/‘- i [] | | Data entries

Clustered vs.

Unclustered Index

Data entries '

[H ¥ 1]
AN S I /X
\/ N 7~

7

1\

Data Records Data Records

CLUSTERED UNCLUSTERED

Clustered = records close in index are close in data

CSE 444 - Sping 2016 20

Clustered/Unclustered

* Primary index = clustered by definition
» Secondary indexes = usually unclustered

CSE 444 - Sping 2016 21

Secondary Indexes

» Applications
— Index other attributes than primary key
— Index unsorted files (heap files)
— Index files that hold data from two relations

« Called “clustered file”
+ Notice the different use of the term “clustered’!

CSE 444 - Sping 2016 2

Index Classification Summary

Primary/secondary
— Primary = determines the location of indexed records
— Secondary = cannot reorder data, does not determine data location

Dense/sparse

— Dense = every key in the data appears in the index
— Sparse = the index contains only some keys

Clustered/uncluster ed
— Clustered = records close in index are close in data

— Unclustered = records close in index may be far in data

B+ tree / Hash table / ...

CSE 444 - Spiing 2016 23

Large Indexes
» What if index does not fit in memory?

* Would like to index the index itself
— Hash-based index
— Tree-based index

CSE 444 - Spiing 2016 24

Hash-Based Index

Good for point queries but not range queries

h2(age) = 00
0

(o) 20 |20
20

b/

age

22 30 |18

5

h2(age) = 01 sid

21

(o)

hi(sid) = 11

Secondary

hash-based index Primary hash-based index

CSE 444 - Sping 2016 25

Tree-Based Index

* How many index levels do we need?
+ Can we create them automatically? Yes!
» Can do something even more powerful!

CSE 444 - Sping 2016 2

B+ Trees

» Search trees

* ldeainB Trees
— Make 1 node = 1 page (= 1 block)
— Keep tree balanced in height

* ldeain B+ Trees
— Make leaves into alinked list : facilitates range queries

CSE 444 - Sping 2016 27

B+ Trees

AN S X
\ <

=7

Data Records Data Records

CLUSTERED

UNCLUSTERED

Note: can also store data records directly as data entries

CSE 444 - Sping 2016 28

B+ Trees Basics

» Parameterd = the degree
» Eachnode has d <= m <= 2d keys (except root)

20 ‘120‘240

Each node also
— | 'y | ‘i =~ has m+1 pointers

Keys k <30

Keys 30<=k<120 Keys 120<=<240 Keys 240<=k

» Eachleaf has d <= m <= 2d keys:

[@ [o] o |
PEIINE Next leaf
Data records =
CSE 444 - Spiing 2016 29

B+ Tree Example

d=2 Find the key 40
ol T]
o T T
o
20 ‘ 60 ‘ ‘ 100 ‘ 120‘ 140 ‘
INENE =L I L
g \
|1u‘1s‘wx‘ | 20‘30‘40‘50](10‘(15‘ ‘ | xn‘»s‘eu‘ |
FNNNE FNENE

50 T 1150 1[e e 1o 1 [e5 [0]

CSE 444 - Spiing 2016 30

Searching a B+ Tree

» Exact key values:
— Start at the root
— Proceed down, to the leaf

Select name
From Student
Where age = 25

* Range queries:

Select name
From Student

Where 20 <= age
and age <= 30

— Find lowest bound as above
— Then sequential traversal

CSE 444 - Sping 2016 31

B+ Tree Design

* How large d ?
* Example:
— Key size = 4 bytes
— Pointer size = 8 bytes
— Block size = 4096 bytes
2dx4 +(2d+1) x 8 <= 4096
d=170

CSE 444 - Sping 2016

B+ Trees in Practice

 Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133
» Typical capacities
— Height 4: 133¢ = 312,900,700 records
— Height 3: 1333 = 2,352,637 records
» Can often hold top levels in buffer pool
— Level 1 = 1page = 8 Kbytes
—Level2 = 133 pages = 1 Mbyte
— Level 3 = 17,689 pages = 133 Mbytes

CSE 444 - Sping 2016 3

Insertionina B+ Tree

Insert (K, P)
Find leaf where K belongs, insert
If no overflow (2d keys or less), halt
If overflow (2d+1 keys), split node, insert in parent:

parent parent
K

KI‘KZ‘K}‘K4‘K5 KI‘KZ‘ ‘

K4 ‘KS‘

PU‘PI‘PZ‘FS‘PA‘pS Po‘m‘l’z‘ ‘

P3‘P4‘p5‘

If leaf, also keep K3 in right node
When root splits, new root has 1 key only

CSE 444 - Sping 2016

Insertionina B+ Tree

Insert K=19
o] []
bl L []
—_— .
20 ‘ 60‘ ‘ | |I00 ‘ 120‘140 ‘
INENEE ~
L T
INNE FIVNE

30 J20][5 J[e0 J[e5 1[0] [e5] [0

CSE 444 - Spiing 2016

Insertionina B+ Tree

After insertion

w] []

[SN
20 60 100 ‘ 120‘ 140 ‘
\ J\LK
"l e T |\
'NNNE NN

f—l |

5[5 I [0][z J 20][1[0 I[e 1[0 1[5][0 |

CSE 444 - Spiing 2016

Insertionina B+ Tree

Now insert 25

20 ‘60‘ ‘ | IOO‘IZG‘MU‘

NN NGRS

\\

TEEERETEED 20 (1‘4(1‘5(1 1nz u‘xs‘w‘
T \m NIE | FIVRRRE ApBA AR
CSE 444 - Sping 2016 37

Insertionina B+ Tree

After insertion

80

20 | 60 mo‘no‘uo‘
10 15‘va‘m zu‘::‘w‘w‘su m,‘“‘ ‘ xu‘xs‘uu‘
l‘l‘\‘\"’l ‘\‘\‘\"‘"\‘ “"‘/‘I“"

FEEEET = EE =] =] [

CSE 444 - Sping 2016 38

Insertionina B+ Tree

But now have to split!

w | []
SN

20‘60‘ ‘ | -lluo‘lza‘l-m‘

N

m‘u‘u‘w zw‘zs‘sa‘dn‘so 50 u‘ ‘ m‘“‘w‘

WL T LT [

!

:‘|‘ \‘\"’l‘ ‘I‘\‘\‘

I15 118 Yo Y20 125 30 Jf40][50 J[e0 Je5 |[so | [85 | [eo |

CSE 444 - Sping 2016 39

Insertionina B+ Tree
After the split

o] []

Ll []

A\

Deletion from a B+ Tree

Delete 30
w [T 1T
FL L [T
<=
20‘]0‘60‘ | |IUO‘IU‘I4U‘
ENENESE I \Li‘\‘
s LTl el T JfereTT]
HEE;YAINEE YV
0 EIE\E o
CSE 444 - Spiing 2016 41

\o‘\s‘u‘w zu‘zs‘ ‘ l‘w‘n‘ u‘u‘ ‘ xo‘ ‘do‘
] .\\\\-I \ ‘/7,\ YN e~
15 18 T o0 J[25][0 [0]
CSE 444 - Sping 2016 40
Deletion from a B+ Tree
After deleting 30
May change to 80 ‘ ‘ ‘
40, or not _‘ \L ‘ ‘
| 100 ‘ 120‘ 140 ‘
/ \ RN
T I T T 5] ST 1]

T 1]
LY INEEE

0] [5][T =][] 0]

CSE 444 - Spiing 2016 42

¥

Deletion from a B+ Tree
Now delete 25

20‘30‘60‘ | IOO‘IZG‘MU‘
INENENE L{X
10 |15 1<‘ ‘ 40‘5(1‘ ‘ mr‘h‘ ‘ xu‘xs‘uu‘
.\.\ \\\\ HEEYINERE IR NES
CSE 444 - Sping 2016 5

Deletion from a B+ Tree
After deleting 25

Deletion from a B+ Tree
Now delete 40

w | []

SN
19 ‘ 30 ‘ 60 ‘ | -| 100 ‘ IED‘ 140 ‘
ARNENENE |‘L\L\‘
o s | o [2]] oo]] wle]] w0 s [on |
.\.\.\ -,\,H\»,\\\H»\\\ A E =

ARl

CSE 444 - Sping 2016 45

Need to rebalance 50
Rotate
20 | 30 | 60 100 ‘ uo‘ 140 ‘
A =
w‘vi‘w‘w zn‘ ‘ ‘ Jn‘w‘ ‘ m‘as‘ ‘ Nr‘xs‘w‘
INNEC PR ENE . YINERE YINENE Ve =
EI [s0 [e0 Jes][0] [e5] [0]
CSE 444 - Spriing 2016 44
Deletion from a B+ Tree
After deleting 40
Rotation not possible 1]
Need to mer/,c_genod—\ ST
19 30 60 100 120 140
D !.g\w\ [ST 11 hel=] | W= 0]
T (,\,H\»UH NNEEE T PNES

CSE 444 - Sping 2016 46

Deletion from a B+ Tree

Final tree

w] []

LTI T
Y

N [|

100 ‘ 120 ‘ 140 ‘

CSE 444 - Spiing 2016 47

Summary on B+ Trees

» Default index structure on most DBMSs
» Very effective at answering ‘point’ queries:
productName = ‘gizmo’

+ Effective for range queries:
50 < price AND price < 100
* Less effective for multirange:
50 < price < 100 AND 2 < quant < 20

CSE 444 - Spiing 2016 48

Optional Material

» Let’s take alook at another example of an
index....

CSE 444 - Sping 2016

R-Tree Example

Designed for spatial data ‘
Search key values are bounding boxes

R2
EINEEN R ﬂ
[@] @]
RS
R3 R4 R5 R6 R7 R4 J
o R7
[O] | o
R2
[re
For insertion: at each level, choose chid whose bounding box
needs least enlargement (in terms of area)
CSE 444 - Spiing 2016 50

