CSE 444: Database Internals

Section 6:

Transactions - Recovery

Review in this section

1. UNDO logging

2. REDO logging

Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

CSE 444 - Spring 2015

Action T MemA | MemB | Disk A Disk B Log
UNDO LOG RULES <START T>

INPUT(A) 8
Reron | IESERREOE |
t:=t*2 v =old value 8

WRITE(A,t) 16 16 8 8 { <T,A,8> >
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 /’lﬁ/ 8 8 8

WRITEBY) | 46~ | 16 16 8 /B//QT,B,8>)
@TPU% 16 16| —16 | 16 8
o B)—16 | 16 16 16 16

COMMIT {<COMMIT ﬁ»

4

Problem 1. UNDO Logging

1.
LSN1 <START T1> Show how far back in
LSN2 <T1 X 5> the recovery manager
LSN3 <START T2> needs to read the log
LSN4 <T1Y7>
L SN5 <T2 X 9> (write the earliest LSN)
LSNG6 <START T3>
LSN7 <T3Z 11>

CRASH

Problem 1.

LSN1
LSN2
LSN3
LSN4
LSNS
LSNG
LSN7

<START T1>
<T1 X 5>
<START T2>
<T1Y7>
<T2 X 9>
<START T3>
<T3Z 11>
CRASH

UNDO Logging

1.

Show how far back in
the recovery manager
needs to read the log

(write the earliest LSN)

LSN1
(need to undo all
changes by active txns)

Review: Nonquiescent Checkpointing

What is the benefit of using Nonquiescent Checkpointing?

* Checkpointing
— Stop accepting new transactions
— Wait until all active transactions abort/commit
— Flush log to disk
— Write <CKPT>
— Resume accepting transactions

* Nonquiescent Checkpointing

— Write a <START CKPT(T1,..., Tk)>
where T1,...,, Tk are all active transactions. Flush log to disk

— Continue normal operation
— When all of T1,...,Tk have completed, write <END CKPT>. Flush log to disk
— More efficient, system does not seem to be stalled

How far to scan log from the end

e Case 1: See <END CKPT> first

— All incomplete transactions began after <START
CKPT...>

e Case 2: See <START CKPT(T1..TK)> first

— Incomplete transactions began after <START CKPT...>
or incomplete ones among T1.. TK

— Find the earliest <START Ti> among them
— At most we have to go until the previous START CKPT

Problem 1.

LSN1 <START T1>
LSN2 <T1 X 5>
LSN3 <START T2>
LSN4 <T1Y7>
LSN5 <T2 X 9>
LSNG <START T3>
LSN7 <T3Z11>
LSNS8 <COMMIT T1>
LSN9 <START CKPT(T2,T3)>
LSN10 <T2 X 13>
LSN11 <T3Y 15>

CRASH

UNDO Logging with CKPT

1.

Show how far back in
the recovery manager
needs to read the log

(write the earliest LSN)

Problem 1.
LSN1 <START T1>
LSN2 <T1 X 5>
LSN3 <START T2>
LSN4 <T1Y7>
LSN5 <T2 X 9>
LSNG <START T3>
LSN7 <T3Z11>
LSNS8 <COMMIT T1>
LSN9 <START CKPT(T2,T3)>
LSN10 <T2 X 13>
LSN11 <T3Y 15>
CRASH

UNDO Logging with CKPT

1.

Show how far back in
the recovery manager
needs to read the log

(write the earliest LSN)

LSN3

(start of the earliest
transaction among
incomplete
transactions)

Problem 1.

LSN1
LSN2
LSN3
LSN4
LSNS
LSNG
LSN7
LSN8
LSN9
LSN10
LSN11

<START T1>
<T1 X 5>
<START T2>
<T1Y7>

<T2 X 9>
<START T3>
<T3Z 11>
<COMMIT T1>
<START CKPT(T2,T3)>
<T2 X 13>
<T3Y 15>
CRASH

UNDO Logging with CKPT

2.

Show the actions of the
recovery manager
during recovery.

Problem 1.

LSN1 <START T1>
LSN2 <T1 X 5>
LSN3 <START T2>
LSN4 <T1Y7>
LSN5 <T2 X 9>
LSNG <START T3>
LSN7 <T3Z 11>
LSNS8 <COMMIT T1>
LSN9 <START CKPT(T2,T3)>
LSN10 <T2 X 13>
LSN11 <T3Y 15>

CRASH

UNDO Logging with CKPT

2.

Show the actions of the
recovery manager
during recovery.

Action Disk B Lo
REDO LOG RULE 0
<START T>
READ(A,1) Both <T, X, v> and <COMMIT > 8
g0 before OUTPUT(X)
=t v = new value 8
WRITE(AL) | 16 16 8 8 <TA,16>
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITEB,t) | 16 16 16 8 8 <TB,16>
///QCOMMW T
- ————
@TPUT(A) 16 6 | 16 | 46— 8
OUTPUT(B) —16 | 16 16 16 16

Magda Balazinska - CSE 444, Spring 2013 13

Problem 2:

<STARTT1>

<T1, A, 10>
<START T2 >
<T2,B,5>
<T1,C,7>

<START T3 >
<T3,D,12>
<COMMITT1 >

< START CKPT ??27?? >
10.< START T4 >

o e s el e B9 e [

REDO Logging

11<T2,E,5>
12.< COMMIT T2 >
13<T3,F, 1>
14.<T4, G, 15>
15.< END CKPT >
16.< COMMIT T3 >
17.< START T5 >
18.<T5,H, 3>
19.< START CKPT ???7? >
20.< COMMIT T5 >
* CRASH *

1.

What are the
correct values of
the two

<START CKPT ?2??7?>
records?

Review: Nonquiescent Checkpointing
for REDO logs

 Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active transactions

* Flush to disk all blocks of committed transactions (dirty
blocks) before <START CKPT...>, while continuing normal
operation

— NOTE the difference with UNDO logs: need to flush writes of all
committed transactions

— We do not need to wait for active transactions to commit/abort

— Buffer manager needs to keep track of dirty blocks and which
transaction modified them

* When all blocks have been written, write <END CKPT>

Problem 2:

1
2
3
4
5.
6
7/
8
9

. <START T1 >
. <T1,A 10>

. <START T2 >

. <T2,B,5>

<T1,C, 7>

. <START T3>

. <T3,D,12 >

. <COMMITT1 >

. < START CKPT ???? >

10.< START T4 >

REDO Logging

11<T2,E 5> 1.
12.< COMMIT T2 > What are the
13.<T3,F, 1> correct values of
14.<T4, G, 15> the two

<START CKPT ?2??7?>

15.< END CKPT >
16.< COMMIT T3 >

17.< START T5 >
18.<T5,H, 3 >

19.< START CKPT ?2?? >
20.< COMMIT T5 >

records?

Problem 2:

<STARTT1>

<T1, A, 10>
<START T2 >
<T2,B,5>
<T1,C,7>

<START T3 >
<T3,D,12>
<COMMITT1 >

< START CKPT ??27?? >
10.< START T4 >

do e sl Gl gm B9 e [

REDO Logging

11<T2,E,5>

12.< COMMIT T2 >
13<T3,F, 1>

14.<T4, G, 15>

15.< END CKPT >

16.< COMMIT T3 >

17.< START T5 >
18.<T5,H, 3>

19.< START CKPT ???7? >
20.< COMMIT T5 >

1.

What are the
correct values of
the two

<START CKPT ?2??7?>
records?

First START CKPT:
< START CKPT (T2, T3) >

Second START CKPT:
< START CKPT (T4, T5) >

Problem 2:

1
2
3
4
5.
6
7/
8
9

. <STARTT1>

. <T1,A 10>

. <START T2 >

. <T2,B,5>
<T1,C,7>

. <START T3>

. <T3,D,12 >

. <COMMITT1 >

. <START CKPT T2,T3 >

10.< START T4 >

REDO Logging

11<T2,E,5>

12.< COMMIT T2 >
13<T3,F, 1>
14.<T4, G, 15>
15.< END CKPT >
16.< COMMIT T3 >
17.< START T5 >
18.<T5,H, 3>

19.< START CKPT T4,T5
>

20.< COMMIT T5 >

NOTE:

<Commit T3> after
<END CKPT>

What are we
CKPTing?

The transactions
that committed
before <START
CKPT>

How far to scan log from the start

Identify committed transactions

e (Case 1:See <END CKPT> first

— All committed transactions before <START CKPT (T1.. TK)> are written

— Consider T1.. Tk, or transactions that started after <START CKPT...>,
trace back until earliest <START Ti>

Case 2: See <START CKPT(T1..TK)> first

— Committed transactions before START CKPT might not have been
written

— Find previous <END CKPT>, its matching <START CKPT(S1], ... Sm)>

— Redo committed transactions that started after <START CKPT T1..Tk>
or S1.. Sm

Problem 2:

<STARTT1>
<T1, A, 10>
<START T2 >
<T2,B,5>
<T1,C,7>
<START T3 >
<T3,D,12>
<COMMITT1 >

do e sl Gl gm B9 e [

10.< START T4 >

< START CKPT T2,T3 >

REDO Logging

11<T2,E 5>
12.< COMMIT T2 >
13.<T3,F, 1>
14.<T4,G, 15>
15.< END CKPT >
16.< COMMIT T3 >
17.<START T5 >
18.<T5,H,3>

19.< START CKPT T4,T5
>

20.< COMMIT T5 >

2.

What fragment of
the log the
recovery manager
needs to read?

Problem 2: REDO Logging

2.
1. <STARTT1> 11.<T2,E 5> What fragment of the
log the recovery
2. <T1,A, 10> 12.< COMMIT T2 > manager needs to
3. <STARTT2> 13.<T3,F, 1> read?
4. <T2,B,5> 14<T4, G, 15> *The second START CKTP
does not have an END
5. <T1,C, 7> 15.< END CKPT > CKPT
* We cannot be sure
6. <STARTT3 > 16.< COMMIT T3 > whether committed
7. <T3,D, 12 > 17.< START T5 > transactions prior to this
changes written to disk.
8. <COMMITT1 > 18.<T5,H, 3> « We must search for the

9. <START CKPT T2,T3> 19.< START CKPT T4,T5> Previous checkpoint (also

consider committed T5).
10.< START T4 > 20.< COMMIT T5 > “In the previous START

CKPT, T2 and T3 were the

two active transactions.

* Both transactions

committed and must thus

be redone.

*T2 was the earliest one

Problem 2:

<STARTT1>
<T1, A, 10>
<START T2 >
<T2,B,5>
<T1,C,7>
<START T3 >
<T3,D,12>
<COMMITT1 >

do e sl Gl gm B9 e [

10.< START T4 >

< START CKPT T2,T3 >

REDO Logging

11<T2,E 5>
12.< COMMIT T2 >
13.<T3,F, 1>
14.<T4,G, 15>
15.< END CKPT >
16.< COMMIT T3 >
17.<START T5 >
18.<T5,H,3>

19.< START CKPT T4,T5
>

20.< COMMIT T5 >

3.

Which elements
are recovered by
the redo recovery
manager? compute
their values after
recovery.

Problem 2:

1
2.
3

4

5
6
7
8
9

. <STARTT1>

<T1, A, 10>

. <START T2 >
.<T2,B,5>

. <T1,C, 7>

. <START T3>
.<T3,D,12 >

. <COMMITT1 >

. <START CKPT T2,T3 >

10.< START T4 >

REDO Logging

11.<T2,E,5>
12.< COMMIT T2 >
13.<T3,F, 1>
14.<T4, G, 15>
15.< END CKPT >
16.< COMMIT T3 >
17.< START T5 >
18.<T5,H,3 >

19.< START CKPT T4,T5
>

20.< COMMIT T5 >

3.

Which elements are
recovered by the
redo recovery
manager? compute
their values after
recovery.

All changes by T2, T3,
T5 (committed)

B=5

2

1
5
1

L nmoQ

=3

Problem 2:

<STARTT1>
<T1, A, 10>
<START T2 >
<T2,B,5>
<T1,C,7>
<START T3 >
<T3,D,12>
<COMMITT1 >

do e sl Gl gm B9 e [

10.< START T4 >

< START CKPT T2,T3 >

REDO Logging

11<T2,E 5>
12.< COMMIT T2 >
13.<T3,F, 1>
14.<T4,G, 15>
15.< END CKPT >
16.< COMMIT T3 >
17.<START T5 >
18.<T5,H,3>

19.< START CKPT T4,T5
>

20.< COMMIT T5 >
21.< END CKPT >

Crush after 21. <
END CKPT >

Earliest log to read?
Values recovered?

Problem 2:

do e sl Gl gm B9 e [

<START T1 >

<T1, A 10>

<START T2 >
<T2,B,5>

<T1,C, 7>

<START T3 >

<T3,D, 12>
<COMMITT1 >

< START CKPT T2,T3 >

10.< START T4 >

REDO Logging

11<T2,E,5>
12.< COMMIT T2 >
13<T3,F, 1>
14.<T4, G, 15>
15.< END CKPT >
16.< COMMIT T3 >
17.< START T5 >
18.<T5,H, 3>

19.< START CKPT T4,T5
>

20.< COMMIT T5 >
21.< END CKPT >

Earliest log to read?
Values recovered?

The last END CKPT
indicates all changes
made by txns started
before START CKPT(T4,
T5) are flushed to disk.

Need to redo
operations by T5 only
because T4 is not
committed.

Problem 2:

<STARTT1>
<T1, A, 10>
<START T2 >
<T2,B,5>
<T1,C,7>
<START T3 >
<T3,D,12>
<COMMITT1 >

do e sl Gl gm B9 e [

10.< START T4 >

< START CKPT T2,T3 >

REDO Logging

11<T2,E,5>
12.< COMMIT T2 >
13<T3,F, 1>
14.<T4, G, 15>
15.< END CKPT >
16.< COMMIT T3 >
17.< START T5 >
18.<T5,H,3 >

19.< START CKPT T4,T5
>

20.< COMMIT T5 >
21.< END CKPT >

Earliest log to read?
Values recovered?

Changes by T5:
H=3

