CSE 444: Database Internals

Section 5:

Transactions

Review in this section

* Serializability and conflict Serializability
— Precedence graph

* Two-Phase Locking

— Strict two phase locking

* Concurrency control by timestamp

Review: (Conflict) Serializable
Schedule

 Aschedule is serializable if it is equivalent to a serial schedule

A schedule is conflict serializable if it can be transformed into
a serial schedule by a series of swappings of adjacent non-
conflicting actions

Example:

r1(A);, wi(A); ry(A); wy(A); ri(B); w,(B); ry(B); wy(B)

ri(A);, wi(A); ri(B); wi(B); ry(A); wy(A); ry(B); wy(B)

Problem 1: Serializability and Locking

e |s this schedule conflict serializable?

R,(A)
R,(B)
Cl
Ro(B)
W,(B)

* No.

* The precedence graph contains a cycle

W,(A), R, (A) *Why does precedence
graph test work?

A .Proof by inducﬁon

(sec 18.2.3)

e Show how 2PL can ensure a conflict-

serializable schedule What is
* Two Phase Locking
J Original schedule below Strict Two Phase Locking?

R,(A)
R,(B)
¢
Ro(B)
W,(B)

Review:

(Strict) Two Phase Locking (2PL)

The 2PL rule:

In every transaction, all lock requests must preceed
a” unlock requeStS *Ensures conflict serializability

*Proof by induction

Strict 2PL: (sec 18.3.4)

All locks held by a transaction are released when
the transaction is completed

— Ensures that schedules are recoverable

* Transactions commit only after all transactions whose
changes they read also commit

— Avoids cascading rollbacks

Magda Balazinska - CSE 444, Spring 2013 7

e Show how 2PL can ensure a conflict-
serializable schedule

J Original schedule below

R1(A)

R,(B)

Ro(B)

W(B)

Ly(A)
Ro(A)
W, (A)
L,(A) : Block
Lo(B)
Is this strict 2PL?
Ro(B) \
Wo(B) No, replace C,
U,(A) by abort
U,(B) -- Release locks
° after commit
C0
L,(A) : Granted
R1(A)
L,(B)
R1(B)
U,(A)
u,(B)

Cy

e Show how the use of locks without 2PL can
lead to a schedule that is NOT conflict-
serializable

J Original schedule below

Ro(A)
Wol(A)
R.(A)
R,(B)
Cl
Ro(B)

W(B)

T,
To

L,(A)

Lo(A) RI(A)

RolA) Ul(A)

Wo(A) Ll(B)

Uy(A) Rl(B)
U,(B)

G

L,(B)

Ro(B)

Wq(B)

Uy(B)

Problem 2: Timestamp-based
Concurrency Control

TS(T) = unique timestamp associated with
transaction T

RT(X) = the highest timestamp of any transaction
that read X

WT(X) = the highest timestamp of any transaction
that wrote X

C(X) = the commit bit: true when transaction with
highest timestamp that wrote X committed

Four Rules

 Rule 1: Read requeston X by T
— TS(T) < WT(X), abort, not physically realizable (read too late)
— TS(T) >= WT(X), physically realizable
* If C=1, accept, update RT(X) if necessary
e IfC=0,delay T

Note:

* |f arequest is not physically realizable, we abort
— for read request, check WT
— for write request, check RT

e |fitis physically realizable
— we accept, delay, or (only for write request) ignore

Four Rules

 Rule 2: Write requeston X by T

— TS(T) < RT(X), not physically realizable (write too late)
e abort
— TS(T) >= RT(X), physically realizable
o TS(T) >= WT(X)
— accept, update WT(X), setC=0
e TS(T) < WT(X)
— IfC=1, ignore
— IfC=0, delay

Four Rules

 Rule 3: Commit request by T
— SetC=1forall Xwrittenby T
— Allow waiting transactions to proceed

e Rule4: AbortT

— Check if the waiting transactions can proceed now.

You should try to understand the rules before
applying them to solve problems ©

Problem 2: Timestamp-based
Concurrency Control

* Explain what happens when a time-stamp based
concurrency control is used.

e ST,->ST,->ST,->ST, -> R (X) ->R,(X) -> W,(X) ->
W, (X) -> W,(Y) -> W,(Y) ->C; -> W,(Z) -> C, -> R,(2)

e Remember!
— You need to mention any changes of RT, WT, A and C bit
of each element
— Four rules in section 18.8.4

— Four Possible actions: request is accepted, ignored,
delayed, rolledback/aborted

ST, -> ST, -> ST, -> ST, -> R, (X) -> R,(X) -> W,(X) -> W,(X) -> W5(Y) -> W,(Y) ->C; -> W,(Z) ->C, ->
R,(2)

RT=0,WT RT=0,WT RT=0,WT
=0,C=1 =0,C=1 =0,C=1

Ry(X)

C =1 means C = true
C =0 means C = false
(no space!)

ST, -> ST, -> ST, -> ST, -> R,(X) -> R,(X) -> W,(X) -> W (X) -> W5(Y) -> W,(Y) -> C; -> W,(Z) -> C, ->
R,(2)

Ry(X)
R,(X)

ST, -> ST, -> ST, -> ST, -> R,(X) -> R,(X) -> W, (X) -> W (X) -> W,(Y) -> W,(Y) -> C; ->W,(Z) ->C, ->
R,(2)

o o | 1 T x| v |z

R,(X) RT=1
R,(X) RT=
W, (X)

ST, -> ST, -> ST, -> ST, -> R,(X) -> R,(X) -> W,(X) -> W (X) -> W,5(Y) -> W,(Y) -> C; -> W,(Z) ->C, ->
R,(2)

o o | 1B 1 | x| v |z

R,(X) RT=1
R,(X) RT=2
W,(X) WT=2,C=0

W, (X)

ST, -> ST, -> ST; -> ST, -> R, (X) -> R,(X) -> W,(X) -> W, (X) -> W,(Y) -> W,(Y) -> C; -> W,(Z) ->C, ->
R,(2)

n | o | 1B |1 | x| v | z

R,(X) RT=1
R,(X) RT=2
W,(X) WT=2, C=0

W, (X): abort

ST, -> ST, -> ST, -> ST, -> R,(X) -> R,(X) -> W,(X) -> W, (X) -> W;(Y) -> W,(Y) -> C; -> W,(Z) ->C, ->
R,(2)

RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
R,(X) RT=1
R,(X) RT=2
W, (X) WT=2, C=0
W, (X): abort
W,(Y) WT=3, C=0

1. Physically realizable:
TS(T;) >= RT(Y) and TS(T;) >= WT(Y)

2. Update WT and C (not committed yet)

ST, -> ST, -> ST, -> ST, -> R,(X) -> R,(X) -> W,(X) -> W, (X) -> W;(Y) -> W,(Y) -> C, ->W,(Z) ->C, ->
R,(2)

RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
R,(X) RT=1
R,(X) RT=2
W, (X) WT=2, C=0
W, (X): abort
W;(Y) WT=3, C=0

W,(Y): delay

O

1. Physically realizable:
TS(T;) >= RT(Y) although TS(T,) < WT(Y)

2. We could not apply Thomas’ write rule (ignore W,(Y)) since C=0

ST, -> ST, -> ST, -> ST, -> R,(X) -> R,(X) -> W,(X) -> W (X) -> W;(Y) -> W,(Y) -> C; -> W,(Z) ->
C,->R,(2)

RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
R,(X) RT=1
R,(X) RT=2
W, (X) WT=2, C=0
W, (X): abort
W;(Y) WT=3, C=0

W,(Y): delay

- le

What else?

ST, -> ST, -> ST, -> ST, -> R,(X) -> R,(X) -> W,(X) -> W (X) -> W;(Y) -> W,(Y) -> C; -> W,(Z) ->
C,->R,(2)

RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
R, (X) RT=1
R,(X) RT=2
W, (X) WT=2, C=0
W, (X): abort
W;(Y) WT=3, C=0
W,(Y): delay
C, C=1
Ignore W,(Y)

and proceed

T W,(2)

A later write by T, has
been committed

ST, -> ST, -> ST; -> ST, -> R,(X) -> R,(X) -> W,(X) -> W (X) -> W;(Y) -> W,(Y) -> C; -> W,(Z) ->
C,->R,(2)

RT=0,WT RT=0,WT RT=0,WT=
=0,C=1 =0,C=1 0,C=1

R,(X) RT=1
R,(X) RT=2
WiX):al 1. Physically realizable:
TS(T,) >= RT(Z) and TS(T,) >= WT(Z) WT=3, C=0
2. Update WT and C (not committed yet) C=1
Ilgnore W,(Y)
and proceed
W,(2) WT=4,C=0

C,

ST, -> ST, -> ST; -> ST, -> R,(X) -> R,(X) -> W,(X) -> W (X) -> W;(Y) -> W,(Y) -> C; -> W,(Z) ->
C, ->R,(2)

RT=0, WT RT=0,WT RT=0, WT-=
=0,C=1 =0,C=1 0,C=1

R,(X) RT=1
R,(X) RT=2
W, (X) WT=2, C=0
W, (X): abort
W;(Y) WT=3, C=0
W,(Y): delay
C, C=1
Ignore W,(Y)
and proceed
W,(Z) WT=4,C=0
C, C=1

R,(2)

ST, -> ST, -> ST; -> ST, -> R,(X) -> R,(X) -> W,(X) -> W (X) -> W;(Y) -> W,(Y) -> C; -> W,(Z) ->
C, ->R,(2)

RT=0, WT RT=0,WT RT=0, WT-=
=0,C=1 =0,C=1 0,C=1

R1(X) RT=1
1. NOT Physically m—_
realizable: WTes G
W,(X): a T5(T) < WT(2)
Abort/rollback WT=3, C=0
G, C=1
Ig ,(Y)
an ceed
W,(2) WT=4,C=0
C, C=1

R,(Z): abort

More Timestamp-based
Concurrency Control

What will happen at the last request?

¢ ST,->ST,->R,(A)->R,(A) ->W,(B) ->W,(B)

e ST,->ST,->R,(A)->C,->R,(A) ->W,(A)

e ST, ->ST,->ST;->R,(A) ->W,(A) ->C; ->W,(A)
* ST,->ST, ->ST,->R,(A) ->W,(A) ->R,(A)

More Timestamp-based
Concurrency Control

What will happen at the last request?
¢ ST,->ST,->R,(A)->R,(A) ->W,(B) ->W,(B)
— ACCEPTED [no need to check C(B)]
e ST,->ST,->R,(A)->C, ->R,(A) ->W,(A)
— ROLLED BACK [R,(A) precedes]
* ST,->ST,->ST,->R,(A) -> W,(A) -> C, -> W,(A)
— IGNORED [W,(A) committed]
* ST,->ST, ->ST;->R,(A) ->W,(A) ->R,(A)
— DELAYED [W,(A) not committed yet]

