COST ESTIMATION & QUERY OPTIMIZATION

CSE 444 – Section 4

Estimating Cost

We have 3 relations:

```
Student(<u>sid</u>, name, age, addr)
Book(<u>bid</u>, title, author)
Checkout(sid, bid, date)
```

We want to run this query:

```
SELECT S.name

FROM Student S, Book B, Checkout C

WHERE S.sid = C.sid

AND B.bid = C.bid

AND B.author = 'Vladimir Putin'

AND S.age > 11

AND S.age < 20
```

Draw a possible logical query plan

Which physical plan is better?

S(<u>sid</u>, name, age, addr) B(<u>bid</u>, title, author) C(<u>sid</u>, <u>bid</u>, date)

Assumptions

- Student: S, Book: B, Checkout: C
- Sid, bid foreign key in C referencing S and B resp.
- Clustered index on C(bid, sid)
- There are 10,000 Student records stored on 1,000 pages.
- There are 50,000 Book records stored on 5,000 pages.
- There are 300,000 Checkout records stored on 15,000 pages.
- There are 8,000 unique students who have an entry in Checkout
- There are 10,000 unique books that are referenced in Checkout
- There are 500 different authors.
- 8 <= student age <= 23

$$V(B, author) = 500$$
 $T(S)=10,000$
 $V(C, sid) = 8000$ $T(B)=50,000$
 $V(C, bid) = 10000$ $T(C)=300,000$
 $8 \le 23$

$$B(S)=1,000$$
 $S(\underline{sid}, name, age, addr)$ $B(B)=5,000$ $B(\underline{bid}, title, author)$ $B(C)=15,000$ $C(\underline{sid}, \underline{bid}, date)$

Selectivity

- (c) Join predicate bid
- (e) $\sigma_{11 < age < 20}$
 - (f) Join predicate sid
 - (a) 1/V(B, author)= 1/500
 - (c) 1 / max(V(B, bid), V(C, bid)) = 1 / max(50000, 10000) = 1 / 50000
 - (e) (# ages covered) / (# possible ages)
 = 8 / 16
 = 1 / 2
 - = (f) 1 / max(V(C, sid), V(S, sid)) = 1 / max(8000, 10000) = 1 / 100000

$$V(B, author) = 500$$
 $T(S)=10,000$
 $V(C, sid) = 8000$ $T(B)=50,000$
 $V(C, bid) = 10000$ $T(C)=300,000$
 $8 \le age \le 23$

$$B(S)=1,000$$

 $B(B)=5,000$
 $B(C)=15,000$

Cardinality

$$T(R1) = ?$$

$$T(R2) = ?$$

$$T(R3) = ?$$

$$T(R4) = ?$$

$$T(R1) = T(B) / 500$$

= 100

$$T(R2) = T(R1) * T(C) / 50000$$

$$= 100 * 300000 / 50000$$

$$= 600$$

$$T(R3) = T(S) / 2$$
$$= 10000 / 2$$
$$= 5000$$

$$T(R4) = T(R2) * T(R3) / 10000$$
$$= 600 * 5000 / 10000$$
$$= 300$$

$$V(B, author) = 500$$
 $T(S)=10,000$
 $V(C, sid) = 8000$ $T(B)=50,000$
 $V(C, bid) = 10000$ $T(C)=300,000$
 $8 \le 23$

$$B(S)=1,000$$
 $S(\underline{sid}, name, age, addr)$ $B(B)=5,000$ $B(\underline{bid}, title, author)$ $B(C)=15,000$ $C(\underline{sid}, \underline{bid}, date)$

COSt

- Data not sorted in any way
- Relations can fit in memory
- Compute the cost of each step (a) through (g)

$$\blacksquare$$
 (a) B(B) = 5000

(b) 0

(d) 0

$$(e) B(S) = 1000$$

(f) 0

(g)

Total: 6150

Selinger Optmization

We want to run this query:

```
SELECT *

FROM R, S, T

WHERE R.a = S.a

AND S.b = T.b
```

Search space heuristics:

- Push selections down
- Avoid cartestian products
- Restrict to left-linear trees

What is the best join order?

Example OPT Table

SELECT *

FROM R, S, T

WHERE R.a = S.a

AND S.b = T.b

Subquery	Cost	Output Size	Plan	Prune or Keep
R	5		Seq. scan	Keep
S	6		Seq. scan	Keep
T	20		Seq. scan	Keep
RS	40		Index Join	Keep
SR	220		Nested loop	Prune
ST	60			Keep
TS	120			Prune
(RS)T	600			Prune
(ST)R	480			Keep