

B+ Trees & Operator Costs CSE 444 - Section 3

B+ Trees

N-ary tree with variable children per node d = degree of the tree Each node has d <= m <= 2d keys (except root)</p> Each node has m+1 pointers

B+ Node Setup

Internal node: Left pointer from key = k points to keys < k • Right pointer from key = k points to keys >= k

Left pointer from key = k points to block containing the

 Last remaining right pointer points to the next leaf on right

Insert 42

Operator Cost Notations

B(R) = blocks in relation R T(R) = tuples in relation R V(R, a) = distinct values of attribute a in relation R M = memory size in blocks

Nested Loop Join

Block Size # Tuples 50 tuples 10020025 tuples

Using tuple-at-a-time nested loop join

Better to use R or S as the outer relation?

R as outer relation: Cost = 802

S as outer relation: Cost = 408

Using page-at-a-time nested loop join

Better to use R or S as the outer relation?

R as outer relation: Cost = 18

S as outer relation: Cost = 24

Index Loop Join

We now have a clustered index on the join attribute of S There are 100 unique values of this attribute in S Idea: iterate over R, probe into S Cost = B(R) + T(R)*B(S)/V(S, B) = 2 + 100*8/100 = 10

Block Size	# Tuple
50 tuples	100
25 tuples	200

- Note: may or may not be better than a nested-loop join

Preview of Optimization... Cardinality Estimation

T(R) = ... $B(R) = \dots$

