CSE 444: Database Internals

Section 2: Indexing

 Lab 1 due tomorrow at 11 pm

— Find course staff at office hours or after section if you have
questions

— Post on discussion board

 We will go through indexing examples together

Indexing

* Another file storing index attribute(s) and
pointers (aka RecordID) or actual records

— Typically smaller than the data file

* Motivation
— Fast access to data (less disk 1/0)

Scenario

Consider the following database schema:

Field Name Data Type Size on disk
Id (primary key) Unsigned INT 4 bytes
firstName Char(50) 50 bytes
lastName Char(50) 50 bytes
emailAddress Char(100) 100 bytes

Scenario

Total records in the database = 5,000,000
Length of each record = 4+50+50+100 = 204 bytes

Let the default block size be 1,024 bytes

How many disk blocks are needed to store this
data set?

Scenario

We will have 1024/204 =5 records per disk
block

No. of blocks needed for the entire table =
5000000/5 = 1,000,000 blocks

Scenario

Suppose you want to find the person with a
particular id (say 5000)

Assume data file sorted on primary key

What is the best way to do so?

Scenario

Linear Search

No. of block accesses = 1000000/2
= 500,000 on avg

Binary Search

No. of block accesses = log, 1000000 = 19.93 = 20

Scenario

Now, suppose you want to find the person having
firstName = ‘John’

Here, the column isn’t sorted and does not hold
an unique value.

What is the best way to do search for the records?

Scenario

Solution: Create an index on the firstName
column

The schema for an index on firstName is:
Field Name Data Type Size on disk

firstName Char(50) 50 bytes
(record pointer) Special 4 bytes

Scenario

Total records in the database = 5,000,000
Length of each index record = 4+50 = 54 bytes

Let the default block size be 1,024 bytes

Therefore,

We will have 1024/54 = 18 records per disk block
Also, No. of blocks needed for the entire table =
5000000/18 = 277,778 blocks

Scenario

Now, a binary search on the index will result in
log, 277778 = 18.08 = 19 block accesses.

Also, to find the address of the actual record,
which requires a further block access to read,
bringing the total to 19 + 1 = 20 block accesses.

Thus, indexing results in a much better
performance as compared to searching the entire
database.

Indexes: Useful for search query / range query /
joins

Revisit Tweet Example:

Tweets(tid, user, time, content)

Tweet Relation in a Sequential File

File is sorted on “tid”

— 1 record

tid user time content

10 1 05:03:00 [“....

20 2 12:05:07 | “.....

30 2 18:12:00 | “..... 1
40 |3 00:16:13 | “.... J
50 4 10:10:13 | “.....

60 1 04:09:07 | “.....

70 2 12:08:34 | “.....

80 4 11:08:09 | “.....

1 page

Index Classification

Primary/secondary
— Primary = determines the location of indexed records
— Secondary = cannot reorder data, does not determine data location

Dense/sparse
— Dense = every key in the data appears in the index
— Sparse = the index contains only some keys

Clustered/unclustered
— Clustered =records close in index are close in data
— Unclustered = records close in index may be far in data

CSE 444 - Spring 2014

15

Ex1. Draw a secondary dense index on

“User”

— 1 record

tid user time content

10 2 05:03:00 [“....

20 1 12:05:07 | “.....

30 2 18:12:00 | “..... 1
40 |3 00:16:13 | “.... J
50 4 10:10:13 | “.....

60 1 04:09:07 | “.....

70 2 12:08:34 | “.....

80 4 11:08:09 | “.....

1 page

Ex1. Secondary Dense Index (user)

» » w N

\ 70
80

tid user time content
10 2 05:03:00 | “..... A 1 record
20 1 12:05:07 | “.....
30 2 18:12:00 | “..... 1
40 |3 00:16:13 | “.... J 1 page
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
2 12:08:34 | “.....
4 11:08:09 | “.....

* Dense: an “index key” (not database key) for every database record
* Secondary: cannot reorder data, does not determine data location
e Also, Unclustered: records close in index may be far in data

Ex1. Alternative solution

tid user time content
1 10 2 05:03:00 | “..... I 1 record
2 20 1 12:05:07 | “.....
3 \A
4 » | 30 2 18:12:00 | “..... 1
40 |3 00:16:13 | “.... J 1 page
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
70 2 12:08:34 | “.....
Buckets
80 4 11:08:09 | “.....

* Convenient way to avoid repeating values and saving
space is to use a level of indirection, called buckets,
between the secondary index file and the data file

tid user time content

10 1 05:03:00 [“....

20 2 12:05:07 | “.....

30 2 18:12:00 | “..... 1
40 |3 00:16:13 | “.... J
50 4 10:10:13 | “.....

60 1 04:09:07 | “.....

70 2 12:08:34 | “.....

80 4 11:08:09 | “.....

Ex2. Draw a primary dense index on
lltidll

— 1 record

1 page

Ex2. Primary Dense Index (tid)

10

20

30

40

[1]

50

60

70

80

arana

§,
\
\
\

— 1 record

}— 1 page

tid user time content
10 2 05:03:00 [“....
20 1 12:05:07 | “.....
30 2 18:12:00 | “.....
40 3 00:16:13 | “.....
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
70 2 12:08:34 | “.....
80 4 11:08:09 | “.....

* Dense: an “index key” for every database record
— (In this case) every “database key” appears as an “index key”

* Primary: determines the location of indexed records

* Also, Clustered: records close in index are close in data

Improve from Primary Clustered Index?

Clustered Index can be made Sparse

(normally one key per page)

Ex3. Draw a primary sparse index on

lltid”

tid user time content

10 2 05:03:00 [“....

20 1 12:05:07 | “.....

30 2 18:12:00 | “..... 1
40 |3 00:16:13 | “.... J
50 4 10:10:13 | “.....

60 1 04:09:07 | “.....

70 2 12:08:34 | “.....

80 4 11:08:09 | “.....

— 1 record

1 page

Ex3. Primary Sparse

10

30

50

70

\\\\\:

Index (tid)

tid user time content
10 2 05:03:00 [“....
20 1 12:05:07 | “.....
30 2 18:12:00 | “.....
40 3 00:16:13 | “.....
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
70 2 12:08:34 | “.....
80 4 11:08:09 | “.....

Only one index file page instead of two

1 record

}— 1 page

Discussion

Primary/Secondary
— Primary: common in queries, efficiency (one tuple/key)
— Secondary: more useful when “almost a key” (always dense)

Clustered/Unclustered

— Clustered:
» fewer data page read, can have sparse index
* expensive to maintain, at most one per file

Dense/Sparse
— Sparse: smaller, only for clustered index, at most one per file

— Dense: multiple dense indexes, useful in some optimization (inverted
data file)

How to decide which indexes to create
— Overhead (read/write index page, updates, deletions)
— Depends on workload (Example in sec 8.4)

10

Multiple Levels of Index

90

170

250

Useful when index file is big and is divided into multiple pages

v

10

30

50

70

90

110

130

150

tid user time content
10 2 05:03:00 [“....
20 1 12:05:07 | “.....
30 2 18:12:00 | “.....
40 3 00:16:13 | “.....
50 4 10:10:13 | “.....
60 1 04:09:07 | “.....
70 2 12:08:34 | “.....
80 4 11:08:09 | “.....

i

Efficient and standard implementation: B+ trees

balanced, good for both range and search query

1 record

}— 1 page

 Tomorrow — Lec 6:
— More on B+ Trees

