
CSE 444: Database Internals

Lectures 26
NoSQL: Key Value Stores

1 CSE 444 - Spring 2015

Annoucements

•  HW6 is due today

•  Final project milestone is due on Monday
–  Show good progress on implementation
–  Show progress on final report

•  Final project due June 10th
–  Code and final report
–  Absolutely no extensions!

CSE 444 - Spring 2015 2

References

•  Scalable SQL and NoSQL Data Stores, Rick Cattell,
SIGMOD Record, December 2010 (Vol. 39, No. 4)

•  Dynamo: Amazon’s Highly Available Key-value
Store. By Giuseppe DeCandia et. al. SOSP 2007.

•  Online documentation: Amazon DynamoDB.

CSE 444 - Spring 2015 3

NoSQL Motivation

•  Originally motivated by Web 2.0 applications

•  Goal is to scale simple OLTP-style workloads to
thousands or millions of users

•  Users are doing both updates and reads

CSE 444 - Spring 2015 4

Why NoSQL as the Solution?

•  Hard to scale transactions
–  Need to partition the database across multiple machines
–  If a transaction touches one machine, life is good
–  If a transaction touches multiple machines, ACID becomes

extremely expensive! Need two-phase commit

•  Replication
–  Replication can help to increase throughput and lower latency
–  Create multiple copies of each database partition
–  Spread queries across these replicas
–  Easy for reads but writes, once again, become expensive!

CSE 444 - Spring 2015 5

NoSQL Key Feature Decisions

•  Want a data management system that is
–  Elastic and highly scalable
–  Flexible (different records have different schemas)

•  To achieve above goals, willing to give up
–  Complex queries: e.g., give up on joins
–  Multi-object transactions
–  ACID guarantees: e.g., eventual consistency is OK

•  Eventual consistency: If updates stop, all replicas will converge to
the same state and all reads will return the same value

–  Not all NoSQL systems give up all these properties

6

All updates
eventually reach
all replicas

CSE 444 - Spring 2015

NoSQL

“Not Only SQL” or “Not Relational”.
Six key features:
1.  Scale horizontally “simple operations”
2.  Replicate/distribute data over many servers
3.  Simple call level interface (contrast w/ SQL)
4.  Weaker concurrency model than ACID
5.  Efficient use of distributed indexes and RAM
6.  Flexible schema

CSE 444 - Spring 2015 7

Cattell, SIGMOD Record 2010

ACID v.s. BASE

ACID = Atomicity, Consistency, Isolation, and Durability

BASE = Basically Available, Soft state, Eventually consistent

CSE 444 - Spring 2015 8

Data Models

•  Tuple = row in a relational db

•  Key-value = records identified with keys have
values that are opaque blobs

•  Extensible record = families of attributes have a
schema, but new attributes may be added

•  Document = nested values, extensible records
(XML, JSON, protobuf, attribute-value pairs)

CSE 444 - Spring 2015 9

Different Types of NoSQL

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  New types of RDBMSs.. not really NoSQL

CSE 444 - Spring 2015 10

Cattell, SIGMOD Record 2010

Today

Key-Value Store: Dynamo

•  Dynamo: Amazon’s Highly Available Key-
value Store. By Giuseppe DeCandia et. al.
SOSP 2007.

•  Main observation:
–  “There are many services on Amazon’s platform that

only need primary-key access to a data store.”
–  Best seller lists, shopping carts, customer

preferences, session management, sales rank,
product catalog

CSE 444 - Spring 2015 11

Basic Features

•  Data model: (key,value) pairs
–  Values are binary objects (blobs)
–  No further schema

•  Operations
–  Insert/delete/lookup by key
–  No operations across multiple data items

•  Consistency
–  Replication with eventual consistency
–  Goal to NEVER reject any writes (bad for business)
–  Multiple versions with conflict resolution during reads

CSE 444 - Spring 2015 12

Operations

•  get(key)
–  Locates object replicas associated with key
–  Returns a single object
–  Or a list of objects with conflicting versions
–  Also returns a context

•  Context holds metadata including version
•  Context is opaque to caller

•  put(key, context, object)
–  Determines where replicas of object should be placed
–  Location depends on key value
–  Data stored persistently including context

CSE 444 - Spring 2015 13

Storage: Distributed Hash Table

Implements a distributed storage
•  Each key-value pair (k,v) is stored at some server h(k)
•  API: write(k,v); read(k)

Use standard hash function: service key k by server h(k)
•  Problem 1: a client knows only one server, doesn’t know

how to access h(k)

•  Problem 2. if new server joins, then N à N+1, and the
entire hash table needs to be reorganized

•  Problem 3: we want replication, i.e. store the object at
more than one server

CSE 444 - Spring 2015 14

Distributed Hash Table
h=0 h=2n-1

A

B

C
D

Responsibility of B

Responsibility of C

Responsibility of A

CSE 444 - Spring 2015 15

Distributed Hash Table Details

•  This type of hashing called “consistent hashing”

•  Basic approach leads to load imbalance
–  Solution: Use V virtual nodes for each physical node
–  Virtual nodes provide better load balance
–  Nb of virtual nodes can vary based on capacity

CSE 444 - Spring 2015 16

Problem 1: Routing
A client doesn’t know server h(k), but some other server

•  Naive routing algorithm:

–  Each node knows its neighbors
–  Send message to nearest neighbor
–  Hop-by-hop from there
–  Obviously this is O(n), so no good

•  Better algorithm: “finger table”
–  Memorize locations of other nodes in the ring
–  a, a + 2, a + 4, a + 8, a + 16, ... a + 2n – 1
–  Send message to closest node to destination
–  Hop-by-hop again: this is log(n)

CSE 444 - Spring 2015 17

Problem 1: Routing
h=0 h=2n-1

A

B

D

C

Read(k)

F

E

Client
 only “knows”

server A

Redirect
request

 to A + 2m

G

 to D + 2p

 to F + 1

Found
Read(k) !

h(k) handled
by server G

O(log n)
18

Problem 2: Joining
h=0 h=2n-1

A

B

C D

Responsibility of D

When X joins:
select random ID

19

Problem 2: Joining
h=0 h=2n-1

A

B

C D

When X joins:
select random ID

X Responsibility of D 20

Problem 2: Joining
h=0 h=2n-1

A

B

C D

When X joins:
select random ID

X Responsibility of X

Redistribute
the load at D

Responsibility of D 21

Problem 3: Replication

•  Need to have some degree of replication to
cope with node failures

•  Let N=degree of replication

•  Assign key k to h(k), h(k)+1, …, h(k)+N-1

CSE 444 - Spring 2015 22

Problem 3: Replication
h=0 h=2n-1

A

B

C
D

Responsibility of B,C,D

Responsibility of C,D,A

Responsibility of A,B,C

CSE 444 - Spring 2015 23

Additional Dynamo Details

•  Each key assigned to a coordinator
•  Coordinator responsible for replication

–  Replication skips virtual nodes that are not distinct
physical nodes

•  Set of replicas for a key is its preference list
•  One-hope routing:

–  Each node knows preference list of each key

•  “Sloppy quorum” replication
–  Each update creates a new version of an object
–  Vector clocks track causality between versions

CSE 444 - Spring 2015 24

Vector Clocks

•  An extension of Multiversion Concurrency
Control (MVCC) to multiple servers

•  Standard MVCC:
each data item X has a timestamp t:
 X4, X9, X10, X14, …, Xt

•  Vector Clocks:
X has set of [server, timestamp] pairs
 X([s1,t1], [s2,t2],…)

CSE 444 - Spring 2015 25

Vector Clocks
Dynamo:2007

26

Vector Clocks: Example

•  A client writes D1 at server SX:
 D1 ([SX,1])

•  Another client reads D1, writes back D2; also handled
by server SX:

 D2 ([SX,2]) (D1 garbage collected)
• 

• 

• 

CSE 444 - Spring 2015 27

Vector Clocks: Example

•  A client writes D1 at server SX:
 D1 ([SX,1])

•  Another client reads D1, writes back D2; also handled
by server SX:

 D2 ([SX,2]) (D1 garbage collected)
•  Another client reads D2, writes back D3;

handled by server SY:
 D3 ([SX,2], [SY,1])

• 

• 

CSE 444 - Spring 2015 28

Vector Clocks: Example

•  A client writes D1 at server SX:
 D1 ([SX,1])

•  Another client reads D1, writes back D2; also handled
by server SX:

 D2 ([SX,2]) (D1 garbage collected)
•  Another client reads D2, writes back D3;

handled by server SY:
 D3 ([SX,2], [SY,1])

•  Another client reads D2, writes back D4;
handled by server SZ:

 D4 ([SX,2], [SZ,1])
• 

CSE 444 - Spring 2015 29

Vector Clocks: Example

•  A client writes D1 at server SX:
 D1 ([SX,1])

•  Another client reads D1, writes back D2; also handled
by server SX:

 D2 ([SX,2]) (D1 garbage collected)
•  Another client reads D2, writes back D3;

handled by server SY:
 D3 ([SX,2], [SY,1])

•  Another client reads D2, writes back D4;
handled by server SZ:

 D4 ([SX,2], [SZ,1])
•  Another client reads D3 and D4: CONFLICT !

CSE 444 - Spring 2015 30

Vector Clocks: Meaning

•  A data item D[(S1,v1),(S2,v2),…] means a value that
represents version v1 for S1, version v2 for S2, etc.

•  If server Si updates D, then:
–  It must increment vi, if (Si, vi) exists
–  Otherwise, it must create a new entry (Si,1)

CSE 444 - Spring 2015 31

Vector Clocks: Conflicts

•  A data item D is an ancestor of D’ if for all
(S,v)∈D there exists (S,v’)∈D’ s.t. v ≤ v’

•  Otherwise, D and D’ are on parallel branches,
and it means that they have a conflict that
needs to be reconciled semantically

CSE 444 - Spring 2015 32

Vector Clocks: Conflict or not?

CSE 444 - Spring 2015 33

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2])

Vector Clocks: Conflict or not?

CSE 444 - Spring 2015 34

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

Vector Clocks: Conflict or not?

CSE 444 - Spring 2015 35

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5])

Vector Clocks: Conflict or not?

CSE 444 - Spring 2015 36

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

Vector Clocks: Conflict or not?

CSE 444 - Spring 2015 37

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2])

Vector Clocks: Conflict or not?

CSE 444 - Spring 2015 38

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

Vector Clocks: Conflict or not?

CSE 444 - Spring 2015 39

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2])

Vector Clocks: Conflict or not?

CSE 444 - Spring 2015 40

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

Vector Clocks: Conflict or not?

CSE 444 - Spring 2015 41

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2])

Vector Clocks: Conflict or not?

CSE 444 - Spring 2015 42

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2]) No

(Sloppy) Quorum Read/Write

•  Parameters:
–  N = number of copies (replicas) of each object
–  R = minimum number of nodes that must participate

in a successful read
–  W = minimum number of nodes that must participate

in a successful write
•  Quorum: R+W > N
•  Sloppy Quorum (Dynamo): allow R+W ≤ N

CSE 444 - Spring 2015 43

Operation Execution

•  Write operations
–  Initial request sent to coordinator
–  Coordinator generates vector clock & stores locally
–  Coordinator forwards new version to all N replicas
–  If at least W-1 < N-1 nodes respond then success!

•  Read operations
–  Initial request sent to coordinator
–  Coordinator requests data from all N replicas
–  Once gets R responses, returns data

•  Sloppy quorum: Involve first N healthy nodes
CSE 444 - Spring 2015 44

Amazon DynamoDB

Additional functionality:
•  Offers choice of eventual consistent vs strongly consistent read
•  Offers secondary indexes to enable queries over non-key attributes

–  So can support selection queries

Try Amazon DynamoDB
http://aws.amazon.com/dynamodb/

CSE 444 - Spring 2015 45

Next Steps

Read about other OLTP systems
•  MongoDB

–  “As of February 2015, MongoDB is the fourth most
popular type of database management system, and
the most popular for document stores.” [Wikipedia]

•  Google’s Spanner (world-scale transactions)
•  H-Store and VoltDB (in-memory OLTP)
Read about other OLAP systems
•  Myria system from DB group at UW
•  Spark, GraphLab, Impala, …

CSE 444 - Spring 2015 46

