CSE 444: Database Internals

Lecture 24
Two-Phase Commit (2PC)

CSE 444 - Spring 2015

Where We Are

* We know how to optimize and execute queries in
a distributed DBMS

stored stored
data data 3

References

« Ullman book: Section 20.5

* Ramakrishnan book: Chapter 22

CSE 444 - Spring 2015

Distributed Transactions

» Concurrency control

« Failure recovery

— Transaction must be committed at all sites or at none
of the sites!

« No matter what failures occur and when they occur
— Two-phase commit protocol (2PC)

CSE 444 - Spring 2015

Distributed Concurrency Control

In theory, different techniques are possible
— Pessimistic, optimistic, locking, timestamps

In practice, distributed two-phase locking
— Simultaneously hold locks at all sites involved
Deadlock detection techniques

— Global wait-for graph (not very practical)

— Timeouts

If deadlock: abort least costly local transaction

CSE 444 - Spring 2015

Two-Phase Commit: Motivation

Coordinator

v bordinate 1
1) User decides>< 2) COMMIT Subordinate
to commit

3) COMMIT

4) Coordinator
crashes

What do we do now?

Subordinate 2
But | already aborted!
Subordinate 3

CSE 444 - Spring 2015

Two-Phase Commit Protocol

» One coordinator and many subordinates
— Phase 1: prepare
« All subordinates must flush tail of write-ahead log to disk before ack
« Must ensure that if coordinator decides to commit, they can commit!
— Phase 2: commit or abort
— Log records for 2PC include transaction and coordinator ids
— Coordinator also logs ids of all subordinates

* Principle
— Whenever a process makes a decision: vote yes/no or commit/abort
— Or whenever a subordinate wants to respond to a message: ack
— First force-write a log record (to make sure it survives a failure)
— Only then send message about decision

CSE 444 - Spring 2015 7

2PC: Phase 1, Prepare

Coordinator

. 2) PREPARE Subordinate 1
1) User decidey| +————x "
to commit 4) YES
3) Force-write: prepare
2) PREPARE
4) YES
4) YES

) PREPAR&) Subordinate 2

3) Force-write: prepare

Subordinate 3
3) Force-write: prepare
CSE 444 - Spring 2015 8

2PC: Phase 2, Commit

i 5) Write: end, then forget transaction
Coordinator

_ 2) COMMIT Subordinate 1
1) Force-write: ———
commit JACK

Transaction is
now committed!

2) COMMIT 3) Force-write: commit
5) Commit transaction

4) ACK

and “forget” it
) COMMIT% Subordinate 2

3) Force-write: commit
5) Commit transaction
Subordinate 3 and “forget” it
3) Force-write: commit
5) Commit transaction and “forget” it
CSE 444 - Spring 2015

2PC with Abort

Coordinator

. 2) PREPARE Subordinate 1
1) User decidesy| j+————
to commit 4) YES
) PREPARE 3) Force-write: prepare
4)NO

) PREPARE

Subordinate 2
3) Force-write: abort
5) Abort transaction
Subordinate 3 and “forget” it
3) Force-write: abort
5) Abort transaction and “forget” it

CSE 444 - Spring 2015

2PC with Abort

. 5) Write: end, then forget transaction
Coordinator 2) ABORT

bordinate 1
1) Force-write: | Subordinate

abort ! 4) ACK

3) Force-write: abort
5) Abort transaction
and “forget” it

O Subordinate 2

Subordinate 3

Coordinator State Machine

« All states involve o
waiting for messages

Receive: Commit
Send: Prepare
/

[COLLECTING)

R: No votes A R: Yes votes
FW: Abor/\Fw: Commit
S: Abort 'S: Commit

ABORTING) [COMMITTING)
/s /

R:ACKS \/R. ACKS

W: End ¢ END) W: End
Forget — Forget

* INIT and PREPARED
involve waiting

Subordinate State Machine

R: Prepare
FW: Prepare

FW: Commit
: Ack

ABORTING

Abort Commit

and forget and forget 13

Handling Site Failures

» Approach 1: no site failure detection
— Can only do retrying & blocking
* Approach 2: timeouts
— Since unilateral abort is ok,
— Subordinate can timeout in init state
— Coordinator can timeout in collecting state

— Prepared state is still blocking

« 2PC is a blocking protocol

CSE 444 - Spring 2015 14

Site Failure Handling Principles

Retry mechanism
— In prepared state, periodically query coordinator
— In committing/aborting state, periodically resend messages to
subordinates

If doesn't know anything about transaction respond
“abort” to inquiry messages about fate of transaction

If there are no log records for a transaction after a
crash then abort transaction and “forget” it

CSE 444 - Spring 2015 15

Site Failure Scenarios

Examples on the board (please take notes)

L)

\Fge: Commit | R: Prepare R: Prepare
Senq: Prepare|fFW: Abort FW: Prepare

S: No vote : Yes vote

/- \
| COLLECTING
\ /

R: No votes—~—1 R Yes votes
FW: Ab:/\!:w: Commit
S: Abo S: Commit

/ N
[ABORTING)(COMMITTING |
\ /

PREPARED

ABORTING

Abort Commit

and forget and forget 16

Observations

Coordinator keeps transaction in transactions table until it
receives all acks

— To ensure subordinates know to commit or abort

— So acks enable coordinator to “forget” about transaction

After crash, if recovery process finds no log records for a
transaction, the transaction is presumed to have aborted

Read-only subtransactions: no changes ever need to be
undone nor redone

CSE 444 - Spring 2015 17

Presumed Abort Protocol

+ Optimization goals
— Fewer messages and fewer force-writes

» Principle
— If nothing known about a transaction, assume ABORT

« Aborting transactions need no force-writing

» Avoid log records for read-only transactions
— Reply with a READ vote instead of YES vote

» Optimizes read-only transactions

CSE 444 - Spring 2015 18

2PC State Machines (repeat) Presumed Abort State Machines

< owr « < oowr «
\Jj@e: Commit | R: Prepare R: Prepare TQE: Commit | R: Prepare
g Send: Prepare|fFW: Abort FW: Prepare ___¥Send: Prepare

R: Prepare
W: Abort FW: Prepare
S: No vote S: No vote

Vs
\

COLLECTING |

. d A
: Yes vote COLLECTING

: Yes vote
PREPARED

PREPARED
R: No votes : Yes votes R: Commit : Yes votes R: Commit
FW: Abort FW: Commit FW: Commit \'jv-":‘;g’gtes FW: Commit \I/?v: /;l;ort EW: Commil
S: Aborf S: Commit - Ack : S: Commit : Abol S Ack
W= © S: Abort = o &
[ABORTING) COMMITTING)

/
ABORTING COMMITTING |

ABORTING

R:ACKS .~ R:ACKS

W:End C__ END D W:End

Abort Commit e
and forget and forget 1° QBN O W:End

R: ACKS | Abort

Commit

and forget and forget 20

