CSE 444: Database Internals

Lecture 23
Distributed Query Processing
and Optimization

CSE 444 - Spring 2015

Readings

 Main textbook: Sections 20.3 and 20.4

* Other textbook:
Database management systems.

Ramakrishnan and Gehrke.
Third Ed. Chapter 22

CSE 444 - Spring 2015

Outline

» Distributed DBMS motivation
 Distributed query optimization/processing

 Distributed DBMS limitations and challenges

CSE 444 - Spring 2015

Distributed DBMS

* Important: many forms and definitions

* Qur definition: shared nothing infrastructure
— Multiple machines connected with a network
— Machines can be far away from each other

DBMS / DBMS
P
] | N stored
stored e
data ! \ ata
DBMS DBMS
—
“stored | ~tored
data data

Reasons for a Distributed DBMS

« Scalability (ex: Amazon, eBay, Google)
— Many small servers cheaper than one big server

— Need to scale incrementally
— This is the focus of parallel DBMSs

 |Inherent distribution

— Large organizations have data at multiple locations
(different offices) -> original motivation

— Different types of data in different DBMSs
— Web-based and Internet-based applications
— This is the focus of distributed DBMSs

CSE 444 - Spring 2015

Distributed vs Parallel DBMS

» Parallel DBMS
— Goal: improve performance through parallelization
— Data distribution is governed solely by performance
— Typically all machines are on the same cluster

* Distributed DBMS

— Goal: manage data stored across several sites
— Each site is administered autonomously
— Each site capable of running independently of others

CSE 444 - Spring 2015 6

Distributed Databases: Principles

» Distributed data independence:

— Users should be able to write queries without
specifying where the relations, or fragments of
relations are stored

— Generalizes physical data independence

» Distributed transaction atomicity:

— Users should be able to write transactions that
access and update data at several sites, as if they
were stored on at a single site

CSE 444 - Spring 2015

Distributed DBMS Architectures

* Client-server
— Client talks to different DBMSs separately
— Back-end DBMSs do not know about each other
* Collaborating server
— DBMS servers are inter-connected with each other
— Servers know how to send parts of queries to others

* Middleware system

— Only one DBMS server needs to know about all others
and how to split queries among them

CSE 444 - Spring 2015 8

Vertical Fragmentation

Students

StudentID Name Address GPA Status

234234 Mary Houston 3.5 Scholarship

345345 Sue Seattle 2.9 Fellowship

345343 Joan Seattle 3.2 Veteran

234234 Ann Portland 3.9 None
Registrar T Bursar

StudentID Name |Address GPA SID Status

234234 Mary Houston 3.5 234234 | Scholarship

345345 Sue Seattle 2.9 345345 | Fellowship

CSE 444 - Spring 2015

Horizontal Fragmentation

CustomersinHouston

Customers
SSN Name | Cit Country
SSN Name | City Country 234234 | Mary (“Houston \ USA
234234 | Mary | Houston |USA
345345 |Sue |Seattle |USA CustomersinSeattle
345343 | Joan | Seattle USA SSN Name | City Country
234234 |Ann | Portland | USA 345345 | Sue _|/Seattie | USA
-- Frank | Calgary | Canada 545343 | Joan &ia_tﬂfj USA
_ Jean | Montreal | Canada CustomersinCanada
SSN Name | City Country
Frank | Calgary ana
Jean Montreal Canada

CSE 444 - Spring 2015 10

Goals of a Distributed DBMS

 Shield users from distribution details

 Distribution transparency
— Naming transparency
— Location transparency
— Fragmentation transparency

— Performance transparency

 Distributed query optimizer ensures similar performance no
matter where query is submitted

— Schema change and transaction transparency
* Replication transparency

CSE 444 - Spring 2015 11

Distributed DBMS Features

 /0's and 80's, three main prototypes:
— SDD-1, distributed INGRES, and R*

* Main components of a distributed DBMS
— Defining data placement and fragmentation
— Distributed catalog
— Distributed query optimization (today)
— Distributed transactions (next lecture)
— Managing replicas (lecture after that)

CSE 444 - Spring 2015

12

Outline

 Distributed DBMS motivation
 Distributed query optimization/processing

 Distributed DBMS limitations and challenges

CSE 444 - Spring 2015

13

Review: Query Evaluation

Steps of query evaluation Query plan

Query Parser (On-the-fly) Psname

(On-the-fly) s

ssity="Seattle’ and ...

Query Rewrite

(Nested loop) =

Optimizer /Sno) Sno\
Executor Supplier Supply
(File scan) (File scan)

CSE 444 - Spring 2015 14

Review: Query Optimization

 Enumerate alternative plans
— Many possible equivalent trees: e.g., join order
— Many implementations for each operator

« Compute estimated cost of each plan
— Compute number of I/Os and CPU utilization
— Based on statistics

* Choose plan with lowest cost

CSE 444 - Spring 2015

15

Distributed Query Optimization

« Search space is larger
— Must select sites for joining relations

— Must select method for shipping inner relation: whole
or matches

* Minimize resource utilization
— /0O, CPU, & communication costs

— Example cost function used in R*

— VVCPU Nbinst + VVI/O NbI/O + VVmsg mesg + WbyterbyteS

« Could also try to minimize response time
— Least cost plan |= Fastest plan

CSE 444 - Spring 2015 16

Inner Table Transfer Strategy
« Ship whole

— Read inner relation at its home site (using index or not)
— Apply any single-table predicates
— Project inner relation to remove attributes not needed

— Ship results to site of outer relation and store in temp file
* Note: we lose any indexes on the inner relation

* Fetch matches
— For each tuple of outer, project tuple on join column
— Send value to site of inner relation
— Find matching tuples from inner relation
— Ship projected, matching tuples back

CSE 444 - Spring 2015 17

Additional Join Strategies

* Dynamically-created temporary index on inner
— Ship inner relation, store in temp table, index temp
¢ Semijoin
— Project outer relation on join column (eliminate dups)
— Ship projected column to site with inner relation
— Compute natural join and ship matching tuples back
— Join the two relations
* Bloomjoin
— Same idea as semijoin, but use Bloom filter instead of sending
all values in the join column
— Bloom filter creates some false positives through collisions

CSE 444 - Spring 2015

18

Semijoin

* R XS =1y an (R X S)
 Where A,, ..., A, are the attributes in R

 Example:
— Employee x Dependents

CSE 444 - Spring 2015

19

Semijoins in Distributed Databases

Dependents

Employee
SSN | Dname | Age

SSN Name

network

Employee X (O (Dependents))

SSN=SsN

age>71

- T=1II SSN (oage>71 (Dependents))
\

Answer = R ™ Dependents
CSE 444 - Spring 2015

R = Employee X T

Employee

SSN

Name

Hash(SSN)

<

Ship

bit vector

Bloomjoin

Dependents

0 SSN

<

Dname | Age

~

1 Hash(SSN)

CSE 444 - Spring 2015

0

0

1 g R ™ Dependents
Ship R containing

1 only matching tuples

21

Distributed vs Local Joins

Why can distributed joins be faster than local ones”?

* More resources are available to the join

— Ex: Distributed query can use twice the buffer pool
(useful when accessing relations through unclustered
indexes)

 Different parts of the join can proceed in parallel

— Ex: Join tuples from page 1 while shipping page 2
— Ex: Can sort the two relations in parallel

CSE 444 - Spring 2015 22

Outline

» Distributed DBMS motivation
 Distributed query optimization/processing

» Distributed DBMS limitations and challenges

CSE 444 - Spring 2015

23

Distributed DBMS Limitations

Top-down
— Global, a priori data placement

— Global query optimization, one query at a time; no
notion of load balance

— Distributed transactions, tight coupling
Assumes full cooperation of all sites
Assumes uniform sites
Assumes short-duration operations
Limited scalability

CSE 444 - Spring 2015

24

Distributed DBMS Challenges

In some distributed databases

» Autonomy: different administrative domains
— Cannot always assume full cooperation
— Do not want distributed transactions

* Heterogeneity
— Different capabilities at different locations

— Different data types, different semantics -> data
integration problem

« Large-scale
— Internet-scale query processor

CSE 444 - Spring 2015

25

