
CSE 444: Database Internals

Lectures 20-21
Parallel DBMSs

1 CSE 444 - Spring 2015

What We Have Already Learned

•  Overall architecture of a DBMS
•  Internals of query execution:

–  Data storage and indexing
–  Buffer management
–  Query evaluation including operator algorithms
–  Query optimization

•  Internals of transaction processing:
–  Concurrency control: pessimistic and optimistic
–  Transaction recovery: undo, redo, and undo/redo

CSE 444 - Spring 2015 2

Where We Are Headed Next

•  Scaling the execution of a query (this week)
–  Parallel DBMS
–  Distributed query processing
–  MapReduce

•  Scaling transactions (next week)
–  Distributed transactions
–  Replication

•  Scaling with NoSQL and NewSQL (in two weeks)
CSE 444 - Spring 2015 3

Reading Assignments

•  Main textbook Chapter 20.1

•  Database management systems.
Ramakrishnan&Gehrke.
Third Ed. Chapter 22.11

CSE 444 - Spring 2015 4

DBMS Deployment: Local

CSE 444 - Spring 2015 5

Data files on disk

DBMS

Application

Desktop

Great for one application
(could be more) and one
user.

CSE 444 - Spring 2015

DBMS Deployment: Client/Server

Data files

connection
(ODBC, JDBC)

6 Applications

DB Server

Great for many apps and
many users

CSE 444 - Spring 2015

DBMS Deployment: 3 Tiers

Data files
7 Browser

DB Server

Great for web-based
applications

Web Server &
App Server

Connection
(e.g., JDBC)

HTTP/SSL

CSE 444 - Spring 2015

DBMS Deployment: Cloud

8 Browser

Great for web-based
applications

Data files DB Server Web Server &
App Server

Connection
(e.g., JDBC)

HTTP/SSL

How to Scale?

9 Browser

DB Server

Connection
(e.g., JDBC)

HTTP/SSL
…

http
multiplex

CSE 444 - Spring 2015
Use many Web servers: Easy!

How to Scale?

10 Browser

Many DBMS
instances: HARD

Connection
(e.g., JDBC)

HTTP/SSL
…

http
multiplex

…

Web Server Farm
CSE 444 - Spring 2015

How to Scale?

•  We can easily replicate the web servers and the
application servers

•  We cannot so easily replicate the database
servers, because the database is unique

•  We need to design ways to scale up the DBMS

CSE 444 - Spring 2015 11

CSE 444 - Spring 2015

How to Scale a DBMS?

12

Scale up

Scale out
A more

powerful server

More servers,
one database

What to scale?

•  OLTP: Transactions per second
–  OLTP = Online Transaction Processing

•  OLAP: Query response time
–  OLAP = Online Analytical Processing

CSE 444 - Spring 2015 13

Scaling Transactions Per Second

•  Amazon
•  Facebook
•  Twitter
•  … your favorite Internet application…

•  Goal is to scale OLTP workloads

•  We will get back to this next week

CSE 444 - Spring 2015 14

Scaling Single Query
Response Time

•  Goal is to scale OLAP workloads

•  That means the analysis of massive datasets

CSE 444 - Spring 2015 15

This Week: Focus on Scaling a
Single Query

CSE 444 - Spring 2015 16

Big Data

•  Buzzword?

•  Definition from industry:
–  High Volume
–  High Variety
–  High Velocity

CSE 444 - Spring 2015 17

http://www.gartner.com/newsroom/id/1731916

Big Data

Volume is not an issue
•  Databases do parallelize easily; techniques available

from the 80’s
–  Data partitioning
–  Parallel query processing

•  SQL is embarrassingly parallel

•  We will learn how to do this

•  And you will implement it in lab 6

CSE 444 - Spring 2015 18

Big Data

New workloads are an issue

•  Big volumes, small analytics
–  OLAP queries: join + group-by + aggregate
–  Can be handled by today’s RDBMSs (e.g., Teradata)

•  Big volumes, big analytics
–  More complex Machine Learning, e.g. click

prediction, topic modeling, SVM, k-means
–  Requires innovation – Active research area

CSE 444 - Spring 2015 19

Data Analytics Companies
Explosion of db analytics companies

•  Greenplum founded in 2003 acquired by EMC in 2010; A
parallel shared-nothing DBMS (this lecture)

•  Vertica founded in 2005 and acquired by HP in 2011; A parallel,
column-store shared-nothing DBMS

•  DATAllegro founded in 2003 acquired by Microsoft in 2008; A
parallel, shared-nothing DBMS

•  Aster Data Systems founded in 2005 acquired by Teradata in
2011; A parallel, shared-nothing, MapReduce-based data
processing system (in two lectures). SQL on top of MapReduce

•  Netezza founded in 2000 and acquired by IBM in 2010. A
parallel, shared-nothing DBMS.

CSE 444 - Spring 2015 20 Great time to be in data management, data mining/statistics, or machine learning!

Two Approaches to Parallel Data
Processing

•  Parallel databases, developed starting with the
80s (this lecture and next)
–  For both OLTP (transaction processing)
–  And for OLAP (decision support queries)

•  MapReduce, first developed by Google,
published in 2004 (in two lectures)
–  Only for decision support queries

CSE 444 - Spring 2015 21 Today we see convergence of the two approaches (Greenplum, BigQuery)

Parallel DBMSs

•  Goal
–  Improve performance by executing multiple

operations in parallel

•  Key benefit

–  Cheaper to scale than relying on a single
increasingly more powerful processor

•  Key challenge
–  Ensure overhead and contention do not kill

performance

22 CSE 444 - Spring 2015

Performance Metrics
for Parallel DBMSs

Speedup
•  More processors è higher speed
•  Individual queries should run faster
•  Should do more transactions per second (TPS)
•  Fixed problem size overall, vary # of processors

("strong scaling”)

23 CSE 444 - Spring 2015

Linear v.s. Non-linear Speedup

processors (=P)

Speedup

24 CSE 444 - Spring 2015

Performance Metrics
for Parallel DBMSs

Scaleup
•  More processors è can process more data
•  Fixed problem size per processor, vary # of

processors ("weak scaling”)
•  Batch scaleup

–  Same query on larger input data should take the same time

•  Transaction scaleup
–  N-times as many TPS on N-times larger database
–  But each transaction typically remains small

25 CSE 444 - Spring 2015

Linear v.s. Non-linear Scaleup

processors (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

26 CSE 444 - Spring 2015

Warning

•  Be careful. Commonly used terms today:
–  “scale up” = use an increasingly more powerful server
–  “scale out” = use a larger number of servers

27 CSE 444 - Spring 2015

Challenges to
Linear Speedup and Scaleup

•  Startup cost
–  Cost of starting an operation on many processors

•  Interference
–  Contention for resources between processors

•  Skew
–  Slowest processor becomes the bottleneck

28 CSE 444 - Spring 2015

Three Architectures for Parallel DB

•  Shared memory

•  Shared disk

•  Shared nothing

CSE 444 - Spring 2015 29

Architectures for Parallel Databases

30

From: Greenplum Database Whitepaper

SAN = “Storage Area Network”
CSE 444 - Spring 2015

Shared Memory

•  Nodes share both RAM and disk
•  Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query to
run faster (see query plans)

•  Easy to use and program
•  But very expensive to scale

CSE 444 - Spring 2015 31

Shared Disk

•  All nodes access the same disks
•  Found in the largest "single-box" (non-cluster)

multiprocessors

Oracle dominates this class of systems

Characteristics:
•  Also hard to scale past a certain point: existing

deployments typically have fewer than 10
machines

CSE 444 - Spring 2015 32

Shared Nothing
•  Cluster of machines on high-speed network
•  Called "clusters" or "blade servers”
•  Each machine has its own memory and disk: lowest

contention.

NOTE: Because all machines today have many cores and
many disks, then shared-nothing systems typically run
many "nodes” on a single physical machine.

Characteristics:
•  Today, this is the most scalable architecture.
•  Most difficult to administer and tune.

33 CSE 444 - Spring 2015 We discuss only Shared Nothing in class

In Class

•  You have a parallel machine. Now what?

•  How do you speed up your DBMS?

CSE 444 - Spring 2015 34

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
–  Each query runs on one processor

• 
– 
– 

• 
– 

CSE 444 - Spring 2015 35

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
–  Each query runs on one processor

•  Inter-operator parallelism
–  A query runs on multiple processors
–  An operator runs on one processor

• 
– 

CSE 444 - Spring 2015 36

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
–  Each query runs on one processor

•  Inter-operator parallelism
–  A query runs on multiple processors
–  An operator runs on one processor

•  Intra-operator parallelism
–  An operator runs on multiple processors

CSE 444 - Spring 2015 37

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
–  Each query runs on one processor

•  Inter-operator parallelism
–  A query runs on multiple processors
–  An operator runs on one processor

•  Intra-operator parallelism
–  An operator runs on multiple processors

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

CSE 444 - Spring 2015 38 We study only intra-operator parallelism: most scalable

Parallel Query Processing

How do we compute these operations on a shared-nothing
parallel db?

•  Selection: σA=123(R)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

Before we answer that: how do we store R (and S) on a
shared-nothing parallel db?

39 CSE 444 - Spring 2015

Horizontal Data Partitioning

CSE 444 - Spring 2015 40

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSE 444 - Spring 2015 41

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Horizontal Data Partitioning

CSE 444 - Spring 2015 42

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning

•  Relation R split into P chunks R0, …, RP-1, stored at
the P nodes

•  Block partitioned
–  Each group of k tuples goes to a different node

•  Hash based partitioning on attribute A:
–  Tuple t to chunk h(t.A) mod P

•  Range based partitioning on attribute A:
–  Tuple t to chunk i if vi-1 < t.A < vi

43 CSE 444 - Spring 2015

Uniform Data v.s. Skewed Data
•  Let R(K,A,B,C); which of the following partition

methods may result in skewed partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

•  Range-partition
–  On the key K
–  On the attribute A

CSE 444 - Spring 2015 44

Uniform Data v.s. Skewed Data
•  Let R(K,A,B,C); which of the following partition

methods may result in skewed partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

•  Range-partition
–  On the key K
–  On the attribute A

Uniform

Uniform Assuming uniform
hash function

CSE 444 - Spring 2015 45

Uniform Data v.s. Skewed Data
•  Let R(K,A,B,C); which of the following partition

methods may result in skewed partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

•  Range-partition
–  On the key K
–  On the attribute A

Uniform

Uniform

May be skewed

Assuming uniform
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

CSE 444 - Spring 2015 46

Uniform Data v.s. Skewed Data
•  Let R(K,A,B,C); which of the following partition

methods may result in skewed partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

•  Range-partition
–  On the key K
–  On the attribute A

Uniform

Uniform

May be skewed

Assuming uniform
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

May be skewed Difficult to partition
the range of A uniformly.

CSE 444 - Spring 2015 47

Data Partitioning Revisited

What are the pros and cons ?

•  Block based partitioning

–  Good load balance but always needs to read all the data
•  Hash based partitioning

–  Good load balance
–  Can avoid reading all the data for equality selections

•  Range based partitioning
–  Can suffer from skew (i.e., load imbalances)
–  Can help reduce skew by creating uneven partitions

48 CSE 444 - Spring 2015

Horizontal Data Partitioning

All three choices are just special cases:

•  For each tuple, compute bin = f(t)

•  Different properties of the function f determine
hash vs. range vs. round robin vs. anything

49 CSE 444 - Spring 2015

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

•  On a conventional database: cost = B(R)

•  Q: What is the cost on a parallel database with
P processors ?
–  Block partitioned
–  Hash partitioned
–  Range partitioned

50 CSE 444 - Spring 2015

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

•  On a conventional database: cost = B(R)

•  Q: What is the cost on a parallel database with
P processors ? A: B(R) / P, but
–  Block partitioned -- all servers do the work
–  Hash partitioned -- one server does the work
–  Range partitioned -- some servers do the work

51 CSE 444 - Spring 2015

Basic Parallel GroupBy

Data: R(K,A,B,C) -- hash-partitioned on K
Query: γA,sum(B)(R)

52

R1 R2 RP . . .

R1’ R2’ RP’

. . .

Reshuffle R
on attribute A

CSE 444 - Spring 2015

Basic Parallel GroupBy

•  Step 1: each server i partitions its chunk Ri using
a hash function h(t.A) mod P: Ri,0, Ri,1, …, Ri,P-1

•  Step 2: server j computes γA, sum(B) on
R0,j, R1,j, …, RP-1,j

53 CSE 444 - Spring 2015

Basic Parallel GroupBy

Compute γA,sum(B)(R)

•  On a conventional database: cost = B(R)

•  Q: What is the cost on a parallel database with
P processors ?

54 CSE 444 - Spring 2015

Basic Parallel GroupBy

Compute γA,sum(B)(R)

•  On a conventional database: cost = B(R)

•  Q: What is the cost on a parallel database with
P processors ?

•  A: B(R) / P

55 CSE 444 - Spring 2015

Basic Parallel GroupBy

Can we do better?
•  Sum?
•  Count?
•  Avg?
•  Max?
•  Median?

56 CSE 444 - Spring 2015

Basic Parallel GroupBy

Can we do better?
•  Sum?
•  Count?
•  Avg?
•  Max?
•  Median?

57 CSE 444 - Spring 2015

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+
 sum(a4+a5+a6)+
 sum(a7+a8+a9))

avg(B) =
 sum(B)/count(B)

median(B)

Parallel Join: R ⋈A=B S

•  Data: R(K1,A, C), S(K2, B, D)
•  Query: R(K1,A,C) ⋈ S(K2,B,D)

58 CSE 444 - Spring 2015

Initially, both R and S are horizontally partitioned on K1 and K2

R1, S1 R2, S2 RP, SP

Parallel Join: R ⋈A=B S

•  Data: R(K1,A, C), S(K2, B, D)
•  Query: R(K1,A,C) ⋈ S(K2,B,D)

59

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally

CSE 444 - Spring 2015

Initially, both R and S are horizontally partitioned on K1 and K2

Parallel Join: R ⋈A=B S

•  Step 1
–  Every server holding any chunk of R partitions its

chunk using a hash function h(t.A) mod P
–  Every server holding any chunk of S partitions its

chunk using a hash function h(t.B) mod P

•  Step 2:

–  Each server computes the join of its local fragment
of R with its local fragment of S

60 CSE 444 - Spring 2015

Parallel Join: R ⋈A=B S

Compute R ⋈A=B S

•  On a conventional database: cost = B(R)+B(S)

•  Q: What is the cost on a parallel database with
P processors ?

61 CSE 444 - Spring 2015

Parallel Join: R ⋈A=B S

Compute R ⋈A=B S

•  On a conventional database: cost = B(R)+B(S)

•  Q: What is the cost on a parallel database with
P processors ?

•  A: (B(R)+B(S)) / P

62 CSE 444 - Spring 2015

Speedup and Scaleup

•  Consider:
–  Query: γA,sum(C)(R)
–  Runtime: dominated by reading chunks from disk

•  If we double the number of nodes P, what is the
new running time?

•  If we double both P and the size of R, what is
the new running time?

CSE 444 - Spring 2015 63

Speedup and Scaleup

•  Consider:
–  Query: γA,sum(C)(R)
–  Runtime: dominated by reading chunks from disk

•  If we double the number of nodes P, what is the
new running time?
–  Half (each server holds ½ as many chunks)

•  If we double both P and the size of R, what is
the new running time?
–  Same (each server holds the same # of chunks)

CSE 444 - Spring 2015 64

Optimization for Small Relations

When joining R and S
•  If |R| >> |S|

–  Leave R where it is
–  Replicate entire S relation across nodes

•  Also called a small join or a broadcast join

CSE 444 - Spring 2015 65

Other Interesting Parallel
Join Implementation

Skew:
•  Some partitions get more input tuples than others

Reasons:
–  Range-partition instead of hash
–  Some values are very popular:

•  Heavy hitters values; e.g. ‘Justin Bieber’

–  Selection before join with different selectivities

•  Some partitions generate more output tuples than
others

CSE 444 - Spring 2015 66

Some Skew Handling Techniques
If using range partition:

•  Ensure each range gets same number of tuples

•  E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

•  Eq-depth v.s. eq-width histograms

CSE 444 - Spring 2015 67

Some Skew Handling Techniques
Create more partitions than nodes

•  And be smart about scheduling the partitions

•  Note: MapReduce uses this technique

CSE 444 - Spring 2015 68

Some Skew Handling Techniques
Use subset-replicate (a.k.a. “skewedJoin”)
•  Given R ⋈A=B S
•  Given a heavy hitter value R.A = ‘v’

(i.e. ‘v’ occurs very many times in R)
•  Partition R tuples with value ‘v’ across all nodes

e.g. block-partition, or hash on other attributes
•  Replicate S tuples with value ‘v’ to all nodes
•  R = the build relation
•  S = the probe relation

CSE 444 - Spring 2015 69

Parallel Query Evaluation

•  Parallel query plan: tree of parallel operators
Intra-operator parallelism
–  Data streams from one operator to the next
–  Typically all cluster nodes process all operators

•  Can run multiple queries at the same time
Inter-query parallelism
–  Queries will share the nodes in the cluster

CSE 444 - Spring 2015 70

Parallel Query Evaluation
New operator: Shuffle
•  Handles data routing, buffering, and flow control
•  Inserted between consecutive operators in the

query plan
•  Two components:

ShuffleProducer and ShuffleConsumer
•  Producer:

–  Pulls data from operator and sends to n consumers
–  Producer acts as driver for operators below it in query

plan
•  Consumer:

–  Buffers input data from n producers and makes it
available to operator through getNext interface

71 CSE 444 - Spring 2015

72

Example: Teradata – Loading

AMP = “Access Module Processor” = unit of parallelism
CSE 444 - Spring 2015

73

Example: Teradata – Query Execution

SELECT *
 FROM Order o, Line i

 WHERE o.item = i.item

 AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order o Item i

Find all orders from today, along with the items ordered

CSE 444 - Spring 2015

Order(oid, item, date), Line(item, …)

Query Execution

CSE 444 - Spring 2015 74

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

Query Execution

CSE 444 - Spring 2015 75

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)

Query Execution

CSE 444 - Spring 2015 76

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

