
CSE 444: Database Internals 

Lectures 20-21 
Parallel DBMSs 
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What We Have Already Learned 

•  Overall architecture of a DBMS 
•  Internals of query execution: 

–  Data storage and indexing 
–  Buffer management 
–  Query evaluation including operator algorithms 
–  Query optimization 

•  Internals of transaction processing: 
–  Concurrency control: pessimistic and optimistic 
–  Transaction recovery: undo, redo, and undo/redo 
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Where We Are Headed Next 

•  Scaling the execution of a query (this week) 
–  Parallel DBMS 
–  Distributed query processing 
–  MapReduce 

•  Scaling transactions (next week) 
–  Distributed transactions 
–  Replication 

•  Scaling with NoSQL and NewSQL (in two weeks) 
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Reading Assignments 

•  Main textbook Chapter 20.1 
 

•  Database management systems. 
Ramakrishnan&Gehrke. 
Third Ed. Chapter 22.11 
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DBMS Deployment: Local 
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Data files on disk 

DBMS 

Application 

Desktop 

Great for one application 
(could be more) and one 
user. 



CSE 444 - Spring 2015 

DBMS Deployment: Client/Server 

Data files 

connection 
(ODBC, JDBC) 

6 Applications 

DB Server 

Great for many apps and 
many users 
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DBMS Deployment: 3 Tiers 

Data files 
7 Browser 

DB Server 

Great for web-based 
applications 

Web Server &  
App Server 

Connection 
(e.g., JDBC) 

HTTP/SSL 
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DBMS Deployment: Cloud 

8 Browser 

Great for web-based 
applications 

Data files DB Server Web Server &  
App Server 

Connection 
(e.g., JDBC) 

HTTP/SSL 



How to Scale? 

9 Browser 

DB Server 

Connection 
(e.g., JDBC) 

HTTP/SSL 
… 

http 
multiplex 
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How to Scale? 

10 Browser 

Many DBMS 
instances: HARD 

Connection 
(e.g., JDBC) 

HTTP/SSL 
… 

http 
multiplex 

… 

Web Server Farm 
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How to Scale? 

•  We can easily replicate the web servers and the 
application servers 

•  We cannot so easily replicate the database 
servers, because the database is unique 

•  We need to design ways to scale up the DBMS 
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How to Scale a DBMS? 

12 

Scale up 

Scale out 
A more  

powerful server 

More servers, 
one database 



What to scale? 

•  OLTP: Transactions per second 
–  OLTP = Online Transaction Processing 

•  OLAP: Query response time 
–  OLAP = Online Analytical Processing 
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Scaling Transactions Per Second 

•  Amazon 
•  Facebook 
•  Twitter 
•  … your favorite Internet application…  

•  Goal is to scale OLTP workloads 

•  We will get back to this next week 
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Scaling Single Query 
Response Time 

•  Goal is to scale OLAP workloads 

•  That means the analysis of massive datasets 
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This Week: Focus on Scaling a 
Single Query 
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Big Data 

•  Buzzword? 

•  Definition from industry: 
–  High Volume 
–  High Variety 
–  High Velocity 
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Big Data 

Volume is not an issue 
•  Databases do parallelize easily; techniques available 

from the 80’s 
–  Data partitioning 
–  Parallel query processing 

•  SQL is embarrassingly parallel 

•  We will learn how to do this 

•  And you will implement it in lab 6 
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Big Data 

New workloads are an issue 

•  Big volumes, small analytics 
–  OLAP queries: join + group-by + aggregate 
–  Can be handled by today’s RDBMSs (e.g., Teradata) 
 

•  Big volumes, big analytics 
–  More complex Machine Learning, e.g. click 

prediction, topic modeling, SVM, k-means 
–  Requires innovation – Active research area 
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Data Analytics Companies 
Explosion of db analytics companies 

•  Greenplum founded in 2003 acquired by EMC in 2010; A 
parallel shared-nothing DBMS (this lecture) 

•  Vertica founded in 2005 and acquired by HP in 2011; A parallel, 
column-store shared-nothing DBMS 

•  DATAllegro founded in 2003 acquired by Microsoft in 2008; A 
parallel, shared-nothing DBMS 

•  Aster Data Systems founded in 2005 acquired by Teradata in 
2011; A parallel, shared-nothing, MapReduce-based data 
processing system (in two lectures).  SQL on top of MapReduce 

•  Netezza founded in 2000 and acquired by IBM in 2010. A 
parallel, shared-nothing DBMS. 
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Two Approaches to Parallel Data 
Processing 

•  Parallel databases, developed starting with the 
80s (this lecture and next) 
–  For both OLTP (transaction processing)  
–  And for OLAP (decision support queries) 

•  MapReduce, first developed by Google, 
published in 2004 (in two lectures) 
–  Only for decision support queries 
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Parallel DBMSs 

•  Goal 
–  Improve performance by executing multiple 

operations in parallel 
 
•  Key benefit 

–  Cheaper to scale than relying on a single 
increasingly more powerful processor 

•  Key challenge 
–  Ensure overhead and contention do not kill 

performance 
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Performance Metrics  
for Parallel DBMSs 

Speedup  
•  More processors è higher speed 
•  Individual queries should run faster 
•  Should do more transactions per second (TPS) 
•  Fixed problem size overall, vary # of processors 

("strong scaling”) 
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Linear v.s. Non-linear Speedup 

# processors (=P) 

Speedup 
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Performance Metrics  
for Parallel DBMSs 

Scaleup 
•  More processors è can process more data 
•  Fixed problem size per processor, vary # of 

processors ("weak scaling”) 
•  Batch scaleup 

–  Same query on larger input data should take the same time 

•  Transaction scaleup 
–  N-times as many TPS on N-times larger database 
–  But each transaction typically remains small 
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Linear v.s. Non-linear Scaleup 

# processors (=P) AND data size  

Batch 
Scaleup 

×1 ×5 ×10 ×15 
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Warning 

•  Be careful. Commonly used terms today: 
–  “scale up” = use an increasingly more powerful server 
–  “scale out” = use a larger number of servers 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
–  Cost of starting an operation on many processors 

•  Interference 
–  Contention for resources between processors 

•  Skew 
–  Slowest processor becomes the bottleneck 
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Three Architectures for Parallel DB 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Architectures for Parallel Databases 

30 

From: Greenplum Database Whitepaper  

SAN = “Storage Area Network” 
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Shared Memory 

•  Nodes share both RAM and disk 
•  Dozens to hundreds of processors 

Example: SQL Server runs on a single machine 
and can leverage many threads to get a query to 
run faster (see query plans) 

•  Easy to use and program 
•  But very expensive to scale 
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Shared Disk 

•  All nodes access the same disks 
•  Found in the largest "single-box" (non-cluster) 

multiprocessors 

Oracle dominates this class of systems 

Characteristics: 
•  Also hard to scale past a certain point: existing 

deployments typically have fewer than 10 
machines 

CSE 444 - Spring 2015 32 



Shared Nothing 
•  Cluster of machines on high-speed network 
•  Called "clusters" or "blade servers” 
•  Each machine has its own memory and disk: lowest 

contention. 
 
NOTE: Because all machines today have many cores and 
many disks, then shared-nothing systems typically run 
many "nodes” on a single physical machine. 

Characteristics: 
•  Today, this is the most scalable architecture. 
•  Most difficult to administer and tune. 
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In Class 

•  You have a parallel machine.  Now what?   

•  How do you speed up your DBMS? 
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Purchase 

pid=pid 

cid=cid 

Customer 

Product 
Purchase 

pid=pid 

cid=cid 

Customer 

Product 

Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
–  Each query runs on one processor 

•    
–    
–    

•     
–    
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Purchase 

pid=pid 

cid=cid 

Customer 

Product 
Purchase 

pid=pid 

cid=cid 

Customer 

Product 

Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
–  Each query runs on one processor 

•  Inter-operator parallelism 
–  A query runs on multiple processors 
–  An operator runs on one processor 

•     
–    
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Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
–  Each query runs on one processor 

•  Inter-operator parallelism 
–  A query runs on multiple processors 
–  An operator runs on one processor 

•  Intra-operator parallelism 
–  An operator runs on multiple processors 
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Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
–  Each query runs on one processor 

•  Inter-operator parallelism 
–  A query runs on multiple processors 
–  An operator runs on one processor 

•  Intra-operator parallelism 
–  An operator runs on multiple processors 
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Parallel Query Processing 

How do we compute these operations on a shared-nothing 
parallel db? 

•  Selection:  σA=123(R) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 

Before we answer that: how do we store R (and S) on a 
shared-nothing parallel db? 
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Horizontal Data Partitioning 
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1  2  P  .  .  . 

Data: Servers: 

K A B 
… … 



Horizontal Data Partitioning 
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K A B 
… … 

1  2  P  .  .  . 

Data: Servers: 

K A B

… …

K A B

… …

K A B

… …



Horizontal Data Partitioning 
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K A B 
… … 

1  2  P  .  .  . 

Data: Servers: 

K A B

… …

K A B

… …

K A B

… …

Which tuples 
go to what server? 



Horizontal Data Partitioning 

•  Relation R split into P chunks R0, …, RP-1, stored at 
the P nodes 

•  Block partitioned 
–  Each group of k tuples goes to a different node 

•  Hash based partitioning on attribute A: 
–  Tuple t to chunk h(t.A) mod P 

•  Range based partitioning on attribute A: 
–  Tuple t to chunk i if vi-1 < t.A < vi 

43 CSE 444 - Spring 2015 



Uniform Data v.s. Skewed Data 
•  Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 

•  Range-partition 
–  On the key K 
–  On the attribute A 
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Uniform Data v.s. Skewed Data 
•  Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 

•  Range-partition 
–  On the key K 
–  On the attribute A 

Uniform 

Uniform Assuming uniform 
hash function 
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Uniform Data v.s. Skewed Data 
•  Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 

•  Range-partition 
–  On the key K 
–  On the attribute A 

Uniform 

Uniform 

May be skewed 

Assuming uniform 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 
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Uniform Data v.s. Skewed Data 
•  Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 

•  Range-partition 
–  On the key K 
–  On the attribute A 

Uniform 

Uniform 

May be skewed 

Assuming uniform 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 

May be skewed Difficult to partition 
the range of A uniformly.  
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Data Partitioning Revisited 

What are the pros and cons ? 
 
•  Block based partitioning 

–  Good load balance but always needs to read all the data 
•  Hash based partitioning  

–  Good load balance 
–  Can avoid reading all the data for equality selections 

•  Range based partitioning 
–  Can suffer from skew (i.e., load imbalances) 
–  Can help reduce skew by creating uneven partitions 
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Horizontal Data Partitioning 

All three choices are just special cases: 

•  For each tuple, compute bin = f(t) 

•  Different properties of the function f determine 
hash vs. range vs. round robin vs. anything 
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Parallel Selection 

Compute σA=v(R), or σv1<A<v2(R) 

•  On a conventional database: cost = B(R) 

•  Q: What is the cost on a parallel database with 
P processors ? 
–  Block partitioned 
–  Hash partitioned 
–  Range partitioned 
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Parallel Selection 

Compute σA=v(R), or σv1<A<v2(R) 

•  On a conventional database: cost = B(R) 

•  Q: What is the cost on a parallel database with 
P processors ?   A: B(R) / P, but 
–  Block partitioned  -- all servers do the work 
–  Hash partitioned  -- one server does the work 
–  Range partitioned  -- some servers do the work 
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Basic Parallel GroupBy 

Data: R(K,A,B,C)  -- hash-partitioned on K 
Query: γA,sum(B)(R) 

52 

R1  R2  RP  .  .  . 

R1’  R2’  RP’  

.  .  . 

Reshuffle R 
on attribute A 

CSE 444 - Spring 2015 



Basic Parallel GroupBy 

•  Step 1: each server i partitions its chunk Ri using 
a hash function h(t.A) mod P: Ri,0, Ri,1, …, Ri,P-1   

•  Step 2:  server j computes γA, sum(B) on  
R0,j, R1,j, …, RP-1,j  
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Basic Parallel GroupBy 

Compute γA,sum(B)(R) 

•  On a conventional database: cost = B(R) 

•  Q: What is the cost on a parallel database with 
P processors ?  
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Basic Parallel GroupBy 

Compute γA,sum(B)(R) 

•  On a conventional database: cost = B(R) 

•  Q: What is the cost on a parallel database with 
P processors ?  

•  A:   B(R) / P 
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Basic Parallel GroupBy 

Can we do better? 
•  Sum? 
•  Count? 
•  Avg? 
•  Max? 
•  Median? 
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Basic Parallel GroupBy 

Can we do better? 
•  Sum? 
•  Count? 
•  Avg? 
•  Max? 
•  Median? 
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Distributive Algebraic Holistic 

sum(a1+a2+…+a9)= 
sum(sum(a1+a2+a3)+ 
        sum(a4+a5+a6)+ 
        sum(a7+a8+a9)) 

avg(B) =  
     sum(B)/count(B) 

median(B) 



Parallel Join:  R ⋈A=B S 

•  Data: R(K1,A, C), S(K2, B, D) 
•  Query: R(K1,A,C) ⋈ S(K2,B,D) 
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Initially, both R and S are horizontally partitioned on K1 and K2 

R1, S1  R2, S2  RP, SP  



Parallel Join:  R ⋈A=B S 

•  Data: R(K1,A, C), S(K2, B, D) 
•  Query: R(K1,A,C) ⋈ S(K2,B,D) 

59 

R1, S1  R2, S2  RP, SP  .  .  . 

R’1, S’1  R’2, S’2  R’P, S’P  .  .  . 

Reshuffle R on R.A 
and S on S.B 

Each server computes 
the join locally 
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Parallel Join:  R ⋈A=B S 

•  Step 1 
–  Every server holding any chunk of R partitions its 

chunk using a hash function h(t.A) mod P 
–  Every server holding any chunk of S partitions its 

chunk using a hash function h(t.B) mod P 
 
•  Step 2:  

–  Each server computes the join of its local fragment 
of R with its local fragment of S 
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Parallel Join:  R ⋈A=B S 

Compute R ⋈A=B S 
 
•  On a conventional database: cost = B(R)+B(S) 

•  Q: What is the cost on a parallel database with 
P processors ?  
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Parallel Join:  R ⋈A=B S 

Compute R ⋈A=B S 
 
•  On a conventional database: cost = B(R)+B(S) 

•  Q: What is the cost on a parallel database with 
P processors ?  

•  A:   (B(R)+B(S)) / P 
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Speedup and Scaleup 

•  Consider: 
–  Query: γA,sum(C)(R) 
–  Runtime: dominated by reading chunks from disk 

•  If we double the number of nodes P, what is the 
new running time? 

•  If we double both P and the size of R, what is 
the new running time? 
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Speedup and Scaleup 

•  Consider: 
–  Query: γA,sum(C)(R) 
–  Runtime: dominated by reading chunks from disk 

•  If we double the number of nodes P, what is the 
new running time? 
–  Half (each server holds ½ as many chunks) 

•  If we double both P and the size of R, what is 
the new running time? 
–  Same (each server holds the same # of chunks) 

CSE 444 - Spring 2015 64 



Optimization for Small Relations 

When joining R and S 
•  If |R| >> |S| 

–  Leave R where it is 
–  Replicate entire S relation across nodes 

•  Also called a small join or a broadcast join 
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Other Interesting Parallel 
Join Implementation 

Skew: 
•  Some partitions get more input tuples than others 

Reasons: 
–  Range-partition instead of hash 
–  Some values are very popular:  

•  Heavy hitters values;  e.g. ‘Justin Bieber’ 

–  Selection before join with different selectivities 

•  Some partitions generate more output tuples than 
others 
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Some Skew Handling Techniques 
If using range partition: 

•  Ensure each range gets same number of tuples 

•  E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6] 

•  Eq-depth v.s. eq-width histograms 
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Some Skew Handling Techniques 
Create more partitions than nodes 

•  And be smart about scheduling the partitions 

•  Note: MapReduce uses this technique 
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Some Skew Handling Techniques 
Use subset-replicate (a.k.a. “skewedJoin”) 
•  Given R ⋈A=B S 
•  Given a heavy hitter value R.A = ‘v’ 

(i.e. ‘v’ occurs very many times in R) 
•  Partition R tuples with value ‘v’ across all nodes 

e.g. block-partition, or hash on other attributes 
•  Replicate S tuples with value ‘v’ to all nodes 
•  R = the build relation 
•  S = the probe relation 
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Parallel Query Evaluation 

•  Parallel query plan: tree of parallel operators 
Intra-operator parallelism 
–  Data streams from one operator to the next 
–  Typically all cluster nodes process all operators 

•  Can run multiple queries at the same time 
Inter-query parallelism 
–  Queries will share the nodes in the cluster 
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Parallel Query Evaluation 
New operator: Shuffle 
•  Handles data routing, buffering, and flow control 
•  Inserted between consecutive operators in the 

query plan 
•  Two components: 

ShuffleProducer and ShuffleConsumer 
•  Producer: 

–  Pulls data from operator and sends to n consumers 
–  Producer acts as driver for operators below it in query 

plan 
•  Consumer: 

–  Buffers input data from n producers and makes it 
available to operator through getNext interface 
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Example: Teradata – Loading 

AMP = “Access Module Processor” = unit of parallelism 
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Example: Teradata – Query Execution 

SELECT *  
  FROM Order o, Line i  

 WHERE o.item = i.item 

   AND o.date = today() 

join 

select 

scan scan 

date = today() 

o.item = i.item 

Order o Item i 

Find all orders from today, along with the items ordered 
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Order(oid, item, date), Line(item, …) 



Query Execution 
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AMP 1 AMP 2 AMP 3 

select 
date=today() 

select 
date=today() 

select 
date=today() 

scan 
Order o 

scan 
Order o 

scan 
Order o 

hash 
h(o.item) 

hash 
h(o.item) 

hash 
h(o.item) 

AMP 1 AMP 2 AMP 3 

join 

select 

scan 

date = today() 

o.item = i.item 

Order o 

Order(oid, item, date), Line(item, …) 



Query Execution 
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AMP 1 AMP 2 AMP 3 

scan 
Item i 

AMP 1 AMP 2 AMP 3 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

join 

scan 
date = today() 

o.item = i.item 

Order o 
Item i 

Order(oid, item, date), Line(item, …) 



Query Execution 
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AMP 1 AMP 2 AMP 3 

join join join 
o.item = i.item o.item = i.item o.item = i.item 

contains all orders and all 
lines where hash(item) = 1 

contains all orders and all 
lines where hash(item) = 2 

contains all orders and all 
lines where hash(item) = 3 

Order(oid, item, date), Line(item, …) 


